IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.12038.html
   My bibliography  Save this paper

Empirical Equilibria in Agent-based Economic systems with Learning agents

Author

Listed:
  • Kshama Dwarakanath
  • Svitlana Vyetrenko
  • Tucker Balch

Abstract

We present an agent-based simulator for economic systems with heterogeneous households, firms, central bank, and government agents. These agents interact to define production, consumption, and monetary flow. Each agent type has distinct objectives, such as households seeking utility from consumption and the central bank targeting inflation and production. We define this multi-agent economic system using an OpenAI Gym-style environment, enabling agents to optimize their objectives through reinforcement learning. Standard multi-agent reinforcement learning (MARL) schemes, like independent learning, enable agents to learn concurrently but do not address whether the resulting strategies are at equilibrium. This study integrates the Policy Space Response Oracle (PSRO) algorithm, which has shown superior performance over independent MARL in games with homogeneous agents, with economic agent-based modeling. We use PSRO to develop agent policies approximating Nash equilibria of the empirical economic game, thereby linking to economic equilibria. Our results demonstrate that PSRO strategies achieve lower regret values than independent MARL strategies in our economic system with four agent types. This work aims to bridge artificial intelligence, economics, and empirical game theory towards future research.

Suggested Citation

  • Kshama Dwarakanath & Svitlana Vyetrenko & Tucker Balch, 2024. "Empirical Equilibria in Agent-based Economic systems with Learning agents," Papers 2408.12038, arXiv.org.
  • Handle: RePEc:arx:papers:2408.12038
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.12038
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George W. Evans & Seppo Honkapohja, 2005. "Policy Interaction, Expectations and the Liquidity Trap," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 303-323, April.
    2. Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Tania Treibich, 2017. "Micro and macro policies in the Keynes+Schumpeter evolutionary models," Journal of Evolutionary Economics, Springer, vol. 27(1), pages 63-90, January.
    3. Simone Brusatin & Tommaso Padoan & Andrea Coletta & Domenico Delli Gatti & Aldo Glielmo, 2024. "Simulating the Economic Impact of Rationality through Reinforcement Learning and Agent-Based Modelling," Papers 2405.02161, arXiv.org, revised Oct 2024.
    4. Giovanni Dosi & Giorgio Fagiolo & Andrea Roventini, 2006. "An Evolutionary Model of Endogenous Business Cycles," Computational Economics, Springer;Society for Computational Economics, vol. 27(1), pages 3-34, February.
    5. repec:hal:spmain:info:hdl:2441/3qv4spsglp8tmorvev1h0duo4p is not listed on IDEAS
    6. Raphael Koster & Jan Balaguer & Andrea Tacchetti & Ari Weinstein & Tina Zhu & Oliver Hauser & Duncan Williams & Lucy Campbell-Gillingham & Phoebe Thacker & Matthew Botvinick & Christopher Summerfield, 2022. "Human-centred mechanism design with Democratic AI," Nature Human Behaviour, Nature, vol. 6(10), pages 1398-1407, October.
      • Raphael Koster & Jan Balaguer & Andrea Tacchetti & Ari Weinstein & Tina Zhu & Oliver Hauser & Duncan Williams & Lucy Campbell-Gillingham & Phoebe Thacker & Matthew Botvinick & Christopher Summerfield, 2022. "Human-centered mechanism design with Democratic AI," Papers 2201.11441, arXiv.org.
    7. Marco Del Negro & Marc P. Giannoni & Frank Schorfheide, 2015. "Inflation in the Great Recession and New Keynesian Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 168-196, January.
    8. Lars E.O. Svensson, 2020. "Monetary Policy Strategies for the Federal Reserve," International Journal of Central Banking, International Journal of Central Banking, vol. 16(1), pages 133-193, February.
    9. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    10. Adler, Jeffrey L. & Satapathy, Goutam & Manikonda, Vikram & Bowles, Betty & Blue, Victor J., 2005. "A multi-agent approach to cooperative traffic management and route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 297-318, May.
    11. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    12. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea & Treibich, Tania, 2015. "Fiscal and monetary policies in complex evolving economies," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 166-189.
    13. Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.
    14. Per Krusell & Anthony A. Smith & Jr., 1998. "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
    15. Joseph E Stiglitz, 2018. "Where modern macroeconomics went wrong," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 34(1-2), pages 70-106.
    16. Hinterlang, Natascha & Tänzer, Alina, 2021. "Optimal monetary policy using reinforcement learning," Discussion Papers 51/2021, Deutsche Bundesbank.
    17. Michael Curry & Alexander Trott & Soham Phade & Yu Bai & Stephan Zheng, 2022. "Analyzing Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning," Papers 2201.01163, arXiv.org, revised Feb 2022.
    18. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    19. Tohid Atashbar & Rui Aruhan Shi, 2023. "AI and Macroeconomic Modeling: Deep Reinforcement Learning in an RBC model," IMF Working Papers 2023/040, International Monetary Fund.
    20. Michael Woodford, 2009. "Convergence in Macroeconomics: Elements of the New Synthesis," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 267-279, January.
    21. repec:hal:spmain:info:hdl:2441/1a9acst1l284eo8kvqrqrnlbl1 is not listed on IDEAS
    22. Hildenbrand, Werner, 1983. "On the "Law of Demand."," Econometrica, Econometric Society, vol. 51(4), pages 997-1019, July.
    23. Edward Hill & Marco Bardoscia & Arthur Turrell, 2021. "Solving Heterogeneous General Equilibrium Economic Models with Deep Reinforcement Learning," Papers 2103.16977, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kshama Dwarakanath & Svitlana Vyetrenko & Peyman Tavallali & Tucker Balch, 2024. "ABIDES-Economist: Agent-Based Simulation of Economic Systems with Learning Agents," Papers 2402.09563, arXiv.org.
    2. Kshama Dwarakanath & Jialin Dong & Svitlana Vyetrenko, 2024. "Tax Credits and Household Behavior: The Roles of Myopic Decision-Making and Liquidity in a Simulated Economy," Papers 2408.10391, arXiv.org, revised Oct 2024.
    3. Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Joseph E. Stiglitz & Tania Treibich, 2020. "Rational Heuristics? Expectations And Behaviors In Evolving Economies With Heterogeneous Interacting Agents," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1487-1516, July.
    4. Jialin Dong & Kshama Dwarakanath & Svitlana Vyetrenko, 2023. "Analyzing the Impact of Tax Credits on Households in Simulated Economic Systems with Learning Agents," Papers 2311.17252, arXiv.org.
    5. Adem Feto & M. K. Jayamohan & Arnis Vilks, 2023. "Applicability and Accomplishments of DSGE Modeling: A Critical Review," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 213-239, September.
    6. repec:hal:spmain:info:hdl:2441/5rtilga41c899ab0rctd3cp2r3 is not listed on IDEAS
    7. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    8. repec:zbw:bofrdp:2018_022 is not listed on IDEAS
    9. Giovanni Dosi & Marcelo Pereira & Andrea Roventini & Maria Enrica Virgillito, 2018. "The labour-augmented K+S model : a laboratory for the analysis of institutional and policy regimes," Working Papers hal-03443457, HAL.
    10. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    11. Senbeta, Sisay, 2011. "How applicable are the new keynesian DSGE models to a typical low-income economy?," MPRA Paper 30931, University Library of Munich, Germany.
    12. repec:hal:spmain:info:hdl:2441/dcditnq6282sbu1u151qe5p7f is not listed on IDEAS
    13. repec:spo:wpmain:info:hdl:2441/dcditnq6282sbu1u151qe5p7f is not listed on IDEAS
    14. Giorgio Fagiolo & Andrea Roventini, 2016. "Macroeconomic Policy in DGSE and Agent-Based Models Redux," Working Papers hal-03459348, HAL.
    15. Michał Brzoza-Brzezina & Jacek Suda, 2021. "Are DSGE models irreparably flawed?," Bank i Kredyt, Narodowy Bank Polski, vol. 52(3), pages 227-252.
    16. Mario Martinoli & Alessio Moneta & Gianluca Pallante, 2022. "Calibration and Validation of Macroeconomic Simulation Models by Statistical Causal Search," LEM Papers Series 2022/33, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. Gulan, Adam, 2018. "Paradise lost? A brief history of DSGE macroeconomics," Research Discussion Papers 22/2018, Bank of Finland.
    18. repec:spo:wpmain:info:hdl:2441/5rtilga41c899ab0rctd3cp2r3 is not listed on IDEAS
    19. Luca Fontanelli, 2023. "Theories of market selection: a survey," LEM Papers Series 2023/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Emiliano Brancaccio & Mauro Gallegati & Raffaele Giammetti, 2022. "Neoclassical influences in agent‐based literature: A systematic review," Journal of Economic Surveys, Wiley Blackwell, vol. 36(2), pages 350-385, April.
    21. Poledna, Sebastian & Miess, Michael Gregor & Hommes, Cars & Rabitsch, Katrin, 2023. "Economic forecasting with an agent-based model," European Economic Review, Elsevier, vol. 151(C).
    22. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    23. Belanger, Gilles, 2016. "Inequality Causes Recessions: A Fallout from Ramsey's Conjecture," MPRA Paper 72335, University Library of Munich, Germany.
    24. Benjamín García & Sebastián Guarda & Markus Kirchner & Rodrigo Tranamil, 2019. "XMAS: An extended model for analysis and simulations," Working Papers Central Bank of Chile 833, Central Bank of Chile.
    25. Dosi, Giovanni & Roventini, Andrea & Russo, Emanuele, 2019. "Endogenous growth and global divergence in a multi-country agent-based model," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 101-129.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.12038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.