IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2022-33.html
   My bibliography  Save this paper

Calibration and Validation of Macroeconomic Simulation Models by Statistical Causal Search

Author

Listed:
  • Mario Martinoli
  • Alessio Moneta
  • Gianluca Pallante

Abstract

We propose a general protocol for calibration and validation of complex simulation models by an approach based on discovery and comparison of causal structures. The key idea is that configurations of parameters of a given theoretical model are selected by minimizing a distance index between two structural models: one estimated from the data generated by the theoretical model, another estimated from a set of observed data. Validation is conceived as a measure of matching between the theoretical and the empirical causal structure. Causal structures are identified combining structural vector autoregressive and independent component analysis, so as to avoid a priori restrictions. We use model confidence set as a tool to measure the uncertainty associated to the alternative configurations of parameters and causal structures. We illustrate the procedure by applying it to a large-scale macroeconomic agent-based model, namely the ''dystopian Schumpeter-meeting-Keynes'' model.

Suggested Citation

  • Mario Martinoli & Alessio Moneta & Gianluca Pallante, 2022. "Calibration and Validation of Macroeconomic Simulation Models by Statistical Causal Search," LEM Papers Series 2022/33, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2022/33
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2022-33.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Giovanni Dosi & Giorgio Fagiolo & Andrea Roventini, 2009. "The microfoundations of business cycles: an evolutionary, multi-agent model," Springer Books, in: Uwe Cantner & Jean-Luc Gaffard & Lionel Nesta (ed.), Schumpeterian Perspectives on Innovation, Competition and Growth, pages 161-180, Springer.
    3. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    4. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    5. Dosi, G. & Pereira, M.C. & Roventini, A. & Virgillito, M.E., 2019. "What if supply-side policies are not enough? The perverse interaction of flexibility and austerity," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 360-388.
    6. repec:hal:spmain:info:hdl:2441/3qv4spsglp8tmorvev1h0duo4p is not listed on IDEAS
    7. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    8. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    9. Davide Secchi & Raffaello Seri, 2017. "Controlling for false negatives in agent-based models: a review of power analysis in organizational research," Computational and Mathematical Organization Theory, Springer, vol. 23(1), pages 94-121, March.
    10. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    11. Giovanni Dosi & Andrea Roventini & Emmanuele Russo, 2020. "Public Policies And The Art Of Catching Up," Working Papers hal-03242369, HAL.
    12. Michael W. McCracken & Serena Ng, 2021. "FRED-QD: A Quarterly Database for Macroeconomic Research," Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
    13. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    15. Dosi, Giovanni & Fagiolo, Giorgio & Roventini, Andrea, 2010. "Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1748-1767, September.
    16. Isabelle Salle & Murat Yıldızoğlu, 2014. "Efficient Sampling and Meta-Modeling for Computational Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
    17. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    18. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea & Treibich, Tania, 2015. "Fiscal and monetary policies in complex evolving economies," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 166-189.
    19. Zhenxi Chen & Thomas Lux, 2018. "Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.
    20. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
    21. Giovanni Dosi & Andrea Roventini & Emanuele Russo, 2021. "Public policies and the art of catching up: matching the historical evidence with a multicountry agent-based model [Catching up, forging ahead, and falling behind]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(4), pages 1011-1036.
    22. Ernesto Carrella & Richard Bailey & Jens Koed Madsen, 2020. "Calibrating Agent-Based Models with Linear Regressions," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(1), pages 1-7.
    23. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    24. Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
    25. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    26. Dosi, Giovanni & Roventini, Andrea & Russo, Emanuele, 2019. "Endogenous growth and global divergence in a multi-country agent-based model," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 101-129.
    27. Peter Winker & Manfred Gilli & Vahidin Jeleskovic, 2007. "An objective function for simulation based inference on exchange rate data," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 125-145, December.
    28. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    29. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
    30. Hall, Alastair R. & Inoue, Atsushi & Nason, James M. & Rossi, Barbara, 2012. "Information criteria for impulse response function matching estimation of DSGE models," Journal of Econometrics, Elsevier, vol. 170(2), pages 499-518.
    31. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    32. Seri, Raffaello & Martinoli, Mario & Secchi, Davide & Centorrino, Samuele, 2021. "Model calibration and validation via confidence sets," Econometrics and Statistics, Elsevier, vol. 20(C), pages 62-86.
    33. Hoover, Kevin D, 1995. "Facts and Artifacts: Calibration and the Empirical Assessment of Real-Business-Cycle Models," Oxford Economic Papers, Oxford University Press, vol. 47(1), pages 24-44, January.
    34. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    35. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    36. David S. Matteson & Ruey S. Tsay, 2017. "Independent Component Analysis via Distance Covariance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 623-637, April.
    37. Helmut Herwartz, 2018. "Hodges–Lehmann Detection of Structural Shocks – An Analysis of Macroeconomic Dynamics in the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(4), pages 736-754, August.
    38. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea, 2013. "Income distribution, credit and fiscal policies in an agent-based Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1598-1625.
    39. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    40. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    41. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2021. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," Papers 2102.05405, arXiv.org, revised Nov 2023.
    42. Favero, Carlo A., 2001. "Applied Macroeconometrics," OUP Catalogue, Oxford University Press, number 9780198296850.
    43. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    44. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    45. repec:hal:spmain:info:hdl:2441/3s3jn8tt5h9mab7fo128gecbhj is not listed on IDEAS
    46. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    47. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    48. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    49. Lars Peter Hansen & James J. Heckman, 1996. "The Empirical Foundations of Calibration," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 87-104, Winter.
    50. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    51. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    52. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    53. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    54. Dridi, Ramdan & Guay, Alain & Renault, Eric, 2007. "Indirect inference and calibration of dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 136(2), pages 397-430, February.
    55. Alessio Moneta & Doris Entner & Patrik O. Hoyer & Alex Coad, 2013. "Causal Inference by Independent Component Analysis: Theory and Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(5), pages 705-730, October.
    56. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    57. Giovanni Dosi & Giorgio Fagiolo & Andrea Roventini, 2006. "An Evolutionary Model of Endogenous Business Cycles," Computational Economics, Springer;Society for Computational Economics, vol. 27(1), pages 3-34, February.
    58. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, September.
    59. Carlo Bianchi & Pasquale Cirillo & Mauro Gallegati & Pietro Vagliasindi, 2007. "Validating and Calibrating Agent-Based Models: A Case Study," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 245-264, October.
    60. Herwartz, Helmut & Plödt, Martin, 2016. "The macroeconomic effects of oil price shocks: Evidence from a statistical identification approach," Journal of International Money and Finance, Elsevier, vol. 61(C), pages 30-44.
    61. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    62. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    63. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    64. Isabelle Salle & Murat Yıldızoğlu, 2014. "Efficient Sampling and Meta-Modeling for Computational Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Vandin, Andrea & Giachini, Daniele & Lamperti, Francesco & Chiaromonte, Francesca, 2022. "Automated and distributed statistical analysis of economic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    4. Seri, Raffaello & Martinoli, Mario & Secchi, Davide & Centorrino, Samuele, 2021. "Model calibration and validation via confidence sets," Econometrics and Statistics, Elsevier, vol. 20(C), pages 62-86.
    5. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    6. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2021. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," Papers 2102.05405, arXiv.org, revised Nov 2023.
    7. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    8. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    9. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    10. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2020. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," LEM Papers Series 2020/31, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    12. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    13. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    14. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    15. Dosi, Giovanni & Lamperti, Francesco & Mazzucato, Mariana & Napoletano, Mauro & Roventini, Andrea, 2023. "Mission-oriented policies and the “Entrepreneurial State” at work: An agent-based exploration," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    16. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    17. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    18. repec:spo:wpmain:info:hdl:2441/401t6job098n79ch91o9giov9d is not listed on IDEAS
    19. Giovanni Dosi & Andrea Roventini, 2019. "More is different ... and complex! the case for agent-based macroeconomics," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 1-37, March.
    20. repec:hal:spmain:info:hdl:2441/401t6job098n79ch91o9giov9d is not listed on IDEAS
    21. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    22. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    23. Francesco Lamperti, 2016. "Empirical Validation of Simulated Models through the GSL-div: an Illustrative Application," LEM Papers Series 2016/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    24. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.

    More about this item

    Keywords

    Calibration; Validation; Simulation models; SVAR models; Causal inference; Model confidence sets; Independent component analysis.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2022/33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.