IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2023-040.html
   My bibliography  Save this paper

AI and Macroeconomic Modeling: Deep Reinforcement Learning in an RBC model

Author

Listed:
  • Tohid Atashbar
  • Rui Aruhan Shi

Abstract

This study seeks to construct a basic reinforcement learning-based AI-macroeconomic simulator. We use a deep RL (DRL) approach (DDPG) in an RBC macroeconomic model. We set up two learning scenarios, one of which is deterministic without the technological shock and the other is stochastic. The objective of the deterministic environment is to compare the learning agent's behavior to a deterministic steady-state scenario. We demonstrate that in both deterministic and stochastic scenarios, the agent's choices are close to their optimal value. We also present cases of unstable learning behaviours. This AI-macro model may be enhanced in future research by adding additional variables or sectors to the model or by incorporating different DRL algorithms.

Suggested Citation

  • Tohid Atashbar & Rui Aruhan Shi, 2023. "AI and Macroeconomic Modeling: Deep Reinforcement Learning in an RBC model," IMF Working Papers 2023/040, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2023/040
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=530084
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qirui Mi & Zhiyu Zhao & Siyu Xia & Yan Song & Jun Wang & Haifeng Zhang, 2024. "Learning Macroeconomic Policies based on Microfoundations: A Stackelberg Mean Field Game Approach," Papers 2403.12093, arXiv.org, revised Oct 2024.
    2. Kshama Dwarakanath & Jialin Dong & Svitlana Vyetrenko, 2024. "Tax Credits and Household Behavior: The Roles of Myopic Decision-Making and Liquidity in a Simulated Economy," Papers 2408.10391, arXiv.org, revised Oct 2024.
    3. Kshama Dwarakanath & Svitlana Vyetrenko & Tucker Balch, 2024. "Empirical Equilibria in Agent-based Economic systems with Learning agents," Papers 2408.12038, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2023/040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.