IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.00835.html
   My bibliography  Save this paper

Impact of COVID-19 type events on the economy and climate under the stochastic DICE model

Author

Listed:
  • Pavel V. Shevchenko
  • Daisuke Murakami
  • Tomoko Matsui
  • Tor A. Myrvoll

Abstract

The classical DICE model is a widely accepted integrated assessment model for the joint modeling of economic and climate systems, where all model state variables evolve over time deterministically. We reformulate and solve the DICE model as an optimal control dynamic programming problem with six state variables (related to the carbon concentration, temperature, and economic capital) evolving over time deterministically and affected by two controls (carbon emission mitigation rate and consumption). We then extend the model by adding a discrete stochastic shock variable to model the economy in the stressed and normal regimes as a jump process caused by events such as the COVID-19 pandemic. These shocks reduce the world gross output leading to a reduction in both the world net output and carbon emission. The extended model is solved under several scenarios as an optimal stochastic control problem, assuming that the shock events occur randomly on average once every 100 years and last for 5 years. The results show that, if the world gross output recovers in full after each event, the impact of the COVID-19 events on the temperature and carbon concentration will be immaterial even in the case of a conservative 10\% drop in the annual gross output over a 5-year period. The impact becomes noticeable, although still extremely small (long-term temperature drops by $0.1^\circ \mathrm{C}$), in a presence of persistent shocks of a 5\% output drop propagating to the subsequent time periods through the recursively reduced productivity. If the deterministic DICE model policy is applied in a presence of stochastic shocks (i.e. when this policy is suboptimal), then the drop in temperature is larger (approximately $0.25^\circ \mathrm{C}$), that is, the lower economic activities owing to shocks imply that more ambitious mitigation targets are now feasible at lower costs.

Suggested Citation

  • Pavel V. Shevchenko & Daisuke Murakami & Tomoko Matsui & Tor A. Myrvoll, 2021. "Impact of COVID-19 type events on the economy and climate under the stochastic DICE model," Papers 2111.00835, arXiv.org.
  • Handle: RePEc:arx:papers:2111.00835
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.00835
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William Nordhaus, 2018. "Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 333-360, August.
    2. Arthi, Vellore & Parman, John, 2021. "Disease, downturns, and wellbeing: Economic history and the long-run impacts of COVID-19," Explorations in Economic History, Elsevier, vol. 79(C).
    3. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, October.
    4. Christian Traeger, 2014. "A 4-Stated DICE: Quantitatively Addressing Uncertainty Effects in Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 1-37, September.
    5. Kharroubi Idris & Langrené Nicolas & Pham Huyên, 2014. "A numerical algorithm for fully nonlinear HJB equations: An approach by control randomization," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 145-165, June.
    6. repec:dau:papers:123456789/12195 is not listed on IDEAS
    7. Tensay Hadush Meles & Lisa Ryan & Joe Wheatley, 2020. "COVID-19 and EU Climate Targets: Can We Now Go Further?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 779-787, August.
    8. Robert S. Pindyck, 2017. "The Use and Misuse of Models for Climate Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 100-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Torre & Simone Marsiglio & Franklin Mendivil & Fabio Privileggi, 2024. "Stochastic disease spreading and containment policies under state-dependent probabilities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 77(1), pages 127-168, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel V. Shevchenko & Daisuke Murakami & Tomoko Matsui & Tor A. Myrvoll, 2022. "Impact of COVID-19 type events on the economy and climate under the stochastic DICE model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 459-476, July.
    2. Moritz A. Drupp & Martin C. Hänsel, 2021. "Relative Prices and Climate Policy: How the Scarcity of Nonmarket Goods Drives Policy Evaluation," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 168-201, February.
    3. Nelson, Tim & Pascoe, Owen & Calais, Prabpreet & Mitchell, Lily & McNeill, Judith, 2019. "Efficient integration of climate and energy policy in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 178-193.
    4. Claire Alestra & Gilbert Cette & Valérie Chouard & Rémy Lecat, 2020. "Long-term growth impact of climate change and policies: the Advanced Climate Change Long-term (ACCL) scenario building model," AMSE Working Papers 2007, Aix-Marseille School of Economics, France.
    5. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    6. van der Ploeg, Frederick & Rezai, Armon, 2019. "The agnostic's response to climate deniers: Price carbon!," European Economic Review, Elsevier, vol. 111(C), pages 70-84.
    7. Alain Quinet, 2019. "What Value Do We Attach to Climate Action?," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 510-511-5, pages 165-179.
    8. Aleksandar Arandjelovi'c & Pavel V. Shevchenko & Tomoko Matsui & Daisuke Murakami & Tor A. Myrvoll, 2024. "Solving stochastic climate-economy models: A deep least-squares Monte Carlo approach," Papers 2408.09642, arXiv.org.
    9. Howard, Peter H. & Derek, Sylvan, 2016. "The Wisdom of the Economic Crowd: Calibrating Integrated Assessment Models Using Consensus," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235639, Agricultural and Applied Economics Association.
    10. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    11. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    12. Eric Jondeau & Grégory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2022. "Environmental Subsidies to Mitigate Transition risk," EconomiX Working Papers 2022-21, University of Paris Nanterre, EconomiX.
    13. Rick Van der Ploeg & Armon Rezai, 2015. "Intergenerational Inequality Aversion, Growth and the Role of Damages: Occam's rule for the global tax," Economics Series Working Papers OxCarre Research Paper 15, University of Oxford, Department of Economics.
    14. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Freeman, Mark C. & Groom, Ben, 2016. "How certain are we about the certainty-equivalent long term social discount rate?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 152-168.
    16. Vermeulen, Robert & Schets, Edo & Lohuis, Melanie & Kölbl, Barbara & Jansen, David-Jan & Heeringa, Willem, 2021. "The heat is on: A framework for measuring financial stress under disruptive energy transition scenarios," Ecological Economics, Elsevier, vol. 190(C).
    17. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    18. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    19. Stan Olijslagers & Sweder van Wijnbergen, 2019. "Discounting the Future: on Climate Change, Ambiguity Aversion and Epstein-Zin Preferences," Tinbergen Institute Discussion Papers 19-030/VI, Tinbergen Institute.
    20. Nicholas Stern & Joseph Stiglitz & Charlotte Taylor, 2022. "The economics of immense risk, urgent action and radical change: towards new approaches to the economics of climate change," Journal of Economic Methodology, Taylor & Francis Journals, vol. 29(3), pages 181-216, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.00835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.