IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.03594.html
   My bibliography  Save this paper

Forecasting High Frequency Order Flow Imbalance

Author

Listed:
  • Aditya Nittur Anantha
  • Shashi Jain

Abstract

Market information events are generated intermittently and disseminated at high speeds in real-time. Market participants consume this high-frequency data to build limit order books, representing the current bids and offers for a given asset. The arrival processes, or the order flow of bid and offer events, are asymmetric and possibly dependent on each other. The quantum and direction of this asymmetry are often associated with the direction of the traded price movement. The Order Flow Imbalance (OFI) is an indicator commonly used to estimate this asymmetry. This paper uses Hawkes processes to estimate the OFI while accounting for the lagged dependence in the order flow between bids and offers. Secondly, we develop a method to forecast the near-term distribution of the OFI, which can then be used to compare models for forecasting OFI. Thirdly, we propose a method to compare the forecasts of OFI for an arbitrarily large number of models. We apply the approach developed to tick data from the National Stock Exchange and observe that the Hawkes process modeled with a Sum of Exponential's kernel gives the best forecast among all competing models.

Suggested Citation

  • Aditya Nittur Anantha & Shashi Jain, 2024. "Forecasting High Frequency Order Flow Imbalance," Papers 2408.03594, arXiv.org.
  • Handle: RePEc:arx:papers:2408.03594
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.03594
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    2. Hasbrouck, Joel, 2018. "High-Frequency Quoting: Short-Term Volatility in Bids and Offers," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(2), pages 613-641, April.
    3. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    4. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    5. Lauterbach, Beni & Ben-Zion, Uri, 1993. "Stock Market Crashes and the Performance of Circuit Breakers: Empirical Evidence," Journal of Finance, American Finance Association, vol. 48(5), pages 1909-1925, December.
    6. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    7. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2002. "Order imbalance, liquidity, and market returns," Journal of Financial Economics, Elsevier, vol. 65(1), pages 111-130, July.
    8. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2022. "Non-parametric estimation of quadratic Hawkes processes for order book events," The European Journal of Finance, Taylor & Francis Journals, vol. 28(7), pages 663-678, May.
    9. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    10. Michael J. Fleming & Eli M. Remolona, 1999. "Price Formation and Liquidity in the U.S. Treasury Market: The Response to Public Information," Journal of Finance, American Finance Association, vol. 54(5), pages 1901-1915, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baldauf, Markus & Mollner, Joshua, 2022. "Fast traders make a quick buck: The role of speed in liquidity provision," Journal of Financial Markets, Elsevier, vol. 58(C).
    2. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    3. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 27, July-Dece.
    4. Tourani-Rad, Alireza & Gilbert, Aaron & Chen, Jun, 2016. "Are foreign IPOs really foreign? Price efficiency and information asymmetry of Chinese foreign IPOs," Journal of Banking & Finance, Elsevier, vol. 63(C), pages 95-106.
    5. Hagströmer, Björn, 2021. "Bias in the effective bid-ask spread," Journal of Financial Economics, Elsevier, vol. 142(1), pages 314-337.
    6. Chin‐Ho Chen & Junmao Chiu & Huimin Chung, 2020. "Arbitrage opportunities, liquidity provision, and trader types in an index option market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 279-307, March.
    7. Adrian, Tobias & Capponi, Agostino & Fleming, Michael & Vogt, Erik & Zhang, Hongzhong, 2020. "Intraday market making with overnight inventory costs," Journal of Financial Markets, Elsevier, vol. 50(C).
    8. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2011. "Recent trends in trading activity and market quality," Journal of Financial Economics, Elsevier, vol. 101(2), pages 243-263, August.
    9. Sifat, Imtiaz Mohammad & Mohamad, Azhar, 2015. "Order imbalance and selling aggression under a shorting ban: Evidence from the UK," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 368-379.
    10. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
    11. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6-2015, January-A.
    12. Banerjee, Anirban & Roy, Prince, 2023. "High-frequency traders’ evolving role as market makers," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    13. Eduard Silantyev, 2019. "Order flow analysis of cryptocurrency markets," Digital Finance, Springer, vol. 1(1), pages 191-218, November.
    14. Asani Sarkar & Robert A. Schwartz, 2009. "Market Sidedness: Insights into Motives for Trade Initiation," Journal of Finance, American Finance Association, vol. 64(1), pages 375-423, February.
    15. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    16. Múnera, Daimer J. & Agudelo, Diego A., 2022. "Who moved my liquidity? Liquidity evaporation in emerging markets in periods of financial uncertainty," Journal of International Money and Finance, Elsevier, vol. 129(C).
    17. Czech, Robert & Huang, Shiyang & Lou, Dong & Wang, Tianyu, 2021. "Informed trading in government bond markets," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1253-1274.
    18. Bernile, Gennaro & Hu, Jianfeng & Tang, Yuehua, 2016. "Can information be locked up? Informed trading ahead of macro-news announcements," Journal of Financial Economics, Elsevier, vol. 121(3), pages 496-520.
    19. Rif, Alexandru & Utz, Sebastian, 2021. "Short-term stock price reversals after extreme downward price movements," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 123-133.
    20. Liyun Zhou & Chunpeng Yang, 2019. "Differences in the effects of seller-initiated versus buyer-initiated crowded trades in stock markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(4), pages 859-890, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.03594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.