IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.03181.html
   My bibliography  Save this paper

Correlation emergence in two coupled simulated limit order books

Author

Listed:
  • Dominic Bauer
  • Derick Diana
  • Tim Gebbie

Abstract

We use random walks to simulate the fluid limit of two coupled diffusive limit order books to model correlation emergence. The model implements the arrival, cancellation and diffusion of orders coupled by a pairs trader profiting from the mean-reversion between the two order books in the fluid limit for a Lit order book with vanishing boundary conditions and order volume conservation. We are able to demonstrate the recovery of an Epps effect from this. We discuss how various stylised facts depend on the model parameters and the numerical scheme and discuss the various strengths and weaknesses of the approach. We demonstrate how the Epps effect depends on different choices of time and price discretisation. This shows how an Epps effect can emerge without recourse to market microstructure noise relative to a latent model but can rather be viewed as an emergent property arising from trader interactions in a world of asynchronous events.

Suggested Citation

  • Dominic Bauer & Derick Diana & Tim Gebbie, 2024. "Correlation emergence in two coupled simulated limit order books," Papers 2408.03181, arXiv.org.
  • Handle: RePEc:arx:papers:2408.03181
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.03181
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. Annalisa Fabretti, 2013. "On the problem of calibrating an agent based model for financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(2), pages 277-293, October.
    3. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    4. Ovidiu V. Precup & Giulia Iori, 2007. "Cross-correlation Measures in the High-frequency Domain," The European Journal of Finance, Taylor & Francis Journals, vol. 13(4), pages 319-331.
    5. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Malliavin-Mancino estimators implemented with non-uniform fast Fourier transforms," Papers 2003.02842, arXiv.org, revised Nov 2020.
    6. Jayaram Muthuswamy & Sudipto Sarkar & Aaron Low & Eric Terry, 2001. "Time variation in the correlation structure of exchange rates: high‐frequency analyses," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(2), pages 127-144, February.
    7. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    8. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    9. Derick Diana & Tim Gebbie, 2023. "Anomalous diffusion and price impact in the fluid-limit of an order book," Papers 2310.06079, arXiv.org, revised Aug 2024.
    10. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    11. Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
    12. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Detecting discrete processes with the Epps effect," Papers 2005.10568, arXiv.org, revised Dec 2024.
    13. Zebedee, Allan A. & Kasch-Haroutounian, Maria, 2009. "A closer look at co-movements among stock returns," Journal of Economics and Business, Elsevier, vol. 61(4), pages 279-294, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Münnix, Michael C. & Schäfer, Rudi & Guhr, Thomas, 2010. "Compensating asynchrony effects in the calculation of financial correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 767-779.
    2. Dicks, Matthew & Paskaramoorthy, Andrew & Gebbie, Tim, 2024. "A simple learning agent interacting with an agent-based market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    3. Henryk Gurgul & Artur Machno, 2017. "The impact of asynchronous trading on Epps effect on Warsaw Stock Exchange," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 287-301, June.
    4. Arnab Chakrabarti & Rituparna Sen, 2022. "Limiting Spectral Distribution of High-dimensional Hayashi-Yoshida Estimator of Integrated Covariance Matrix," Papers 2201.00119, arXiv.org.
    5. Derick Diana & Tim Gebbie, 2023. "Anomalous diffusion and price impact in the fluid-limit of an order book," Papers 2310.06079, arXiv.org, revised Aug 2024.
    6. Ivan Jericevich & Murray McKechnie & Tim Gebbie, 2021. "Calibrating an adaptive Farmer-Joshi agent-based model for financial markets," Papers 2104.09863, arXiv.org.
    7. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    8. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    9. Chenkai Wang & Junji Ren & Peng Yang, 2024. "Alleviating Non-identifiability: a High-fidelity Calibration Objective for Financial Market Simulation with Multivariate Time Series Data," Papers 2407.16566, arXiv.org, revised Oct 2024.
    10. Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
    11. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    12. Andreea B. Dragut, 2012. "Stock Data Clustering and Multiscale Trend Detection," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 87-105, March.
    13. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    14. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Detecting discrete processes with the Epps effect," Papers 2005.10568, arXiv.org, revised Dec 2024.
    15. Arnab Chakrabarti & Rituparna Sen, 2023. "Copula Estimation for Nonsynchronous Financial Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 116-149, May.
    16. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "The Epps effect under alternative sampling schemes," Papers 2011.11281, arXiv.org, revised Aug 2021.
    17. Siyan Chen & Saul Desiderio, 2022. "Calibration of Agent-Based Models by Means of Meta-Modeling and Nonparametric Regression," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1457-1478, December.
    18. Ghaderi, Mohammad, 2022. "Public health interventions in the face of pandemics: Network structure, social distancing, and heterogeneity," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1016-1031.
    19. Chang, Patrick & Pienaar, Etienne & Gebbie, Tim, 2021. "The Epps effect under alternative sampling schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Iori, G. & Precup, O. V., 2006. "Weighted network analysis of high frequency cross-correlation measures," Working Papers 06/10, Department of Economics, City University London.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.03181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.