IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.01624.html
   My bibliography  Save this paper

How to build a cross-impact model from first principles: Theoretical requirements and empirical results

Author

Listed:
  • Mehdi Tomas
  • Iacopo Mastromatteo
  • Michael Benzaquen

Abstract

Trading a financial instrument pushes its price and those of other assets, a phenomenon known as cross-impact. To be of use, cross-impact models must fit data and be well-behaved so they can be applied in applications such as optimal trading. To address these issues, we introduce a set of desirable properties which constrain cross-impact models. We classify cross-impact models according to which properties they satisfy and stress them on three different asset classes to evaluate goodness-of-fit. We find that two models are robust across markets, but only one satisfies all desirable properties and is appropriate for applications.

Suggested Citation

  • Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Papers 2004.01624, arXiv.org, revised Mar 2022.
  • Handle: RePEc:arx:papers:2004.01624
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.01624
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Schneider & F. Lillo, 2019. "Cross-impact and no-dynamic-arbitrage," Quantitative Finance, Taylor & Francis Journals, vol. 19(1), pages 137-154, January.
    2. Iacopo Mastromatteo & Michael Benzaquen & Zoltan Eisler & Jean-Philippe Bouchaud, 2017. "Trading Lightly: Cross-Impact and Optimal Portfolio Execution," Papers 1702.03838, arXiv.org, revised Aug 2017.
    3. Paolo Pasquariello & Clara Vega, 2015. "Strategic Cross-Trading in the U.S. Stock Market," Review of Finance, European Finance Association, vol. 19(1), pages 229-282.
    4. Olivier Guéant, 2017. "Optimal market making," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(2), pages 112-154, March.
    5. Aurélien Alfonsi & Florian Klöck & Alexander Schied, 2016. "Multivariate Transient Price Impact and Matrix-Valued Positive Definite Functions," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 914-934, August.
    6. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
    7. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A mean field game of portfolio trading and its consequences on perceived correlations," Working Papers hal-02003143, HAL.
    8. Luis Carlos Garc'ia del Molino & Iacopo Mastromatteo & Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "The Multivariate Kyle model: More is different," Papers 1806.07791, arXiv.org, revised Dec 2018.
    9. Aurélien Alfonsi & Alexander Schied & Florian Klöck, 2016. "Multivariate transient price impact and matrix-valued positive definite functions," Post-Print hal-00919895, HAL.
    10. Iacopo Mastromatteo & Bence Toth & Jean-Philippe Bouchaud, 2013. "Agent-based models for latent liquidity and concave price impact," Papers 1311.6262, arXiv.org, revised Dec 2014.
    11. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    12. Mehdi Tomas & Mathieu Rosenbaum, 2019. "From microscopic price dynamics to multidimensional rough volatility models," Papers 1910.13338, arXiv.org, revised Oct 2019.
    13. Hasbrouck, Joel & Seppi, Duane J., 2001. "Common factors in prices, order flows, and liquidity," Journal of Financial Economics, Elsevier, vol. 59(3), pages 383-411, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber & Eyal Neuman & Sturmius Tuschmann, 2024. "Optimal Portfolio Choice with Cross-Impact Propagators," Papers 2403.10273, arXiv.org.
    2. Philippe van der Beck & Jean-Philippe Bouchaud & Dario Villamaina, 2024. "Ponzi Funds," Papers 2405.12768, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Working Papers hal-02567489, HAL.
    2. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2022. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Post-Print hal-02567489, HAL.
    3. Mathieu Rosenbaum & Mehdi Tomas, 2021. "A characterisation of cross-impact kernels," Papers 2107.08684, arXiv.org.
    4. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2021. "Cross impact in derivative markets," Working Papers hal-03378903, HAL.
    5. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2021. "Cross impact in derivative markets," Papers 2102.02834, arXiv.org, revised Mar 2022.
    6. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2023. "Cross impact in derivative markets," Post-Print hal-03378903, HAL.
    7. L. C. Garcia Del Molino & I. Mastromatteo & Michael Benzaquen & J.-P. Bouchaud, 2019. "The Multivariate Kyle model: More is different," Working Papers hal-02323433, HAL.
    8. Luis Carlos Garc'ia del Molino & Iacopo Mastromatteo & Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "The Multivariate Kyle model: More is different," Papers 1806.07791, arXiv.org, revised Dec 2018.
    9. L. C. Garcia Del Molino & I. Mastromatteo & Michael Benzaquen & J.-P. Bouchaud, 2020. "The Multivariate Kyle model: More is different," Post-Print hal-02323433, HAL.
    10. Gerry Tsoukalas & Jiang Wang & Kay Giesecke, 2019. "Dynamic Portfolio Execution," Management Science, INFORMS, vol. 67(5), pages 2015-2040, May.
    11. Masamitsu Ohnishi & Makoto Shimoshimizu, 2022. "Optimal Pair–Trade Execution with Generalized Cross–Impact," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(2), pages 253-289, June.
    12. Yutong Lu & Gesine Reinert & Mihai Cucuringu, 2023. "Co-trading networks for modeling dynamic interdependency structures and estimating high-dimensional covariances in US equity markets," Papers 2302.09382, arXiv.org, revised May 2024.
    13. Seungki Min & Costis Maglaras & Ciamac C. Moallemi, 2018. "Cross-Sectional Variation of Intraday Liquidity, Cross-Impact, and their Effect on Portfolio Execution," Papers 1811.05524, arXiv.org.
    14. Francesco Cordoni & Fabrizio Lillo, 2020. "Instabilities in Multi-Asset and Multi-Agent Market Impact Games," Papers 2004.03546, arXiv.org, revised Nov 2021.
    15. Rama Cont & Mihai Cucuringu & Chao Zhang, 2021. "Cross-Impact of Order Flow Imbalance in Equity Markets," Papers 2112.13213, arXiv.org, revised Jun 2023.
    16. Lester Ingber, 2020. "Developing Bid-Ask Probabilities for High-Frequency Trading," Virtual Economics, The London Academy of Science and Business, vol. 3(2), pages 7-24, April.
    17. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A Mean Field Game of Portfolio Trading and Its Consequences On Perceived Correlations," Papers 1902.09606, arXiv.org.
    18. Nicolas Baradel & Bruno Bouchard & David Evangelista & Othmane Mounjid, 2019. "Optimal inventory management and order book modeling," Post-Print hal-01710301, HAL.
    19. Vincent Ragel & Damien Challet, 2024. "Data time travel and consistent market making: taming reinforcement learning in multi-agent systems with anonymous data," Papers 2408.02322, arXiv.org.
    20. Jasdeep Kalsi & Terry Lyons & Imanol Perez Arribas, 2019. "Optimal execution with rough path signatures," Papers 1905.00728, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.01624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.