IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.19858.html
   My bibliography  Save this paper

AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks

Author

Listed:
  • Tiago Monteiro

Abstract

In quantitative finance, machine learning methods are essential for alpha generation. This study introduces a new approach that combines Hidden Markov Models (HMM) and neural networks, integrated with Black-Litterman portfolio optimization. During the COVID period (2019-2022), this dual-model approach achieved a 83% return with a Sharpe ratio of 0.77. It incorporates two risk models to enhance risk management, showing efficiency during volatile periods. The methodology was implemented on the QuantConnect platform, which was chosen for its robust framework and experimental reproducibility. The system, which predicts future price movements, includes a three-year warm-up to ensure proper algorithm function. It targets highly liquid, large-cap energy stocks to ensure stable and predictable performance while also considering broker payments. The dual-model alpha system utilizes log returns to select the optimal state based on the historical performance. It combines state predictions with neural network outputs, which are based on historical data, to generate trading signals. This study examined the architecture of the trading system, data pre-processing, training, and performance. The full code and backtesting data are available under the QuantConnect terms.

Suggested Citation

  • Tiago Monteiro, 2024. "AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks," Papers 2407.19858, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2407.19858
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.19858
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Lennart Oelschlager & Timo Adam, 2020. "Detecting bearish and bullish markets in financial time series using hierarchical hidden Markov models," Papers 2007.14874, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yueyao & Lee, I-Chen & Hong, Yili & Deng, Xinwei, 2022. "Building degradation index with variable selection for multivariate sensory data," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Chen, Wen-Bin & Li, Xiao-Yang & Wu, Ji-Peng & Kang, Rui, 2024. "Uncertain random accelerated degradation modelling and statistical analysis with aleatory and epistemic uncertainties from multiple dimensions," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Lolea Iulian Cornel & Stamule Simona, 2021. "Trading using Hidden Markov Models during COVID-19 turbulences," Management & Marketing, Sciendo, vol. 16(4), pages 334-351, December.
    4. Adam, Timo & Mayr, Andreas & Kneib, Thomas, 2022. "Gradient boosting in Markov-switching generalized additive models for location, scale, and shape," Econometrics and Statistics, Elsevier, vol. 22(C), pages 3-16.
    5. Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.19858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.