IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v22y2022icp3-16.html
   My bibliography  Save this article

Gradient boosting in Markov-switching generalized additive models for location, scale, and shape

Author

Listed:
  • Adam, Timo
  • Mayr, Andreas
  • Kneib, Thomas

Abstract

Markov-switching generalized additive models for location, scale, and shape constitute a novel class of flexible latent-state time series regression models. In contrast to conventional Markov-switching regression models, they can be used to model different state-dependent parameters of the response distribution — not only the mean, but also variance, skewness, and kurtosis parameters — as potentially smooth functions of a given set of explanatory variables. In addition, the set of possible distributions that can be specified for the response is not limited to the exponential family but additionally includes, for instance, a variety of Box-Cox-transformed, zero-inflated, and mixture distributions. An estimation approach based on the EM algorithm is proposed, where the gradient boosting framework is exploited to prevent overfitting while simultaneously performing variable selection. The feasibility of the suggested approach is assessed in simulation experiments and illustrated in a real-data application, where the conditional distribution of the daily average price of energy in Spain is modeled over time.

Suggested Citation

  • Adam, Timo & Mayr, Andreas & Kneib, Thomas, 2022. "Gradient boosting in Markov-switching generalized additive models for location, scale, and shape," Econometrics and Statistics, Elsevier, vol. 22(C), pages 3-16.
  • Handle: RePEc:eee:ecosta:v:22:y:2022:i:c:p:3-16
    DOI: 10.1016/j.ecosta.2021.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306221000502
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Mayr & Nora Fenske & Benjamin Hofner & Thomas Kneib & Matthias Schmid, 2012. "Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 403-427, May.
    2. Lennart Oelschlager & Timo Adam, 2020. "Detecting bearish and bullish markets in financial time series using hierarchical hidden Markov models," Papers 2007.14874, arXiv.org.
    3. Camila P. E. de Souza & Nancy E. Heckman, 2014. "Switching nonparametric regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 617-637, December.
    4. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    5. Karthik Sriram & R. V. Ramamoorthi & Pulak Ghosh, 2016. "On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 87-104, February.
    6. Vianey Leos-Barajas & Eric J. Gangloff & Timo Adam & Roland Langrock & Floris M. Beest & Jacob Nabe-Nielsen & Juan M. Morales, 2017. "Multi-scale Modeling of Animal Movement and General Behavior Data Using Hidden Markov Models with Hierarchical Structures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 232-248, September.
    7. Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
    8. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    9. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    10. Voudouris, Vlasios & Stasinopoulos, Dimitrios & Rigby, Robert & Di Maio, Carlo, 2011. "The ACEGES laboratory for energy policy: Exploring the production of crude oil," Energy Policy, Elsevier, vol. 39(9), pages 5480-5489, September.
    11. Gilles Celeux & Jean-Baptiste Durand, 2008. "Selecting hidden Markov model state number with cross-validated likelihood," Computational Statistics, Springer, vol. 23(4), pages 541-564, October.
    12. Hofner, Benjamin & Mayr, Andreas & Schmid, Matthias, 2016. "gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i01).
    13. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    16. Langrock, R. & Zucchini, W., 2011. "Hidden Markov models with arbitrary state dwell-time distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 715-724, January.
    17. Bartolucci, F. & De Luca, G., 2003. "Likelihood-based inference for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 445-449, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
    3. Shanshan Qin & Zhenni Tan & Yuehua Wu, 2024. "On robust estimation of hidden semi-Markov regime-switching models," Annals of Operations Research, Springer, vol. 338(2), pages 1049-1081, July.
    4. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    5. Boyao Zhang & Tobias Hepp & Sonja Greven & Elisabeth Bergherr, 2022. "Adaptive step-length selection in gradient boosting for Gaussian location and scale models," Computational Statistics, Springer, vol. 37(5), pages 2295-2332, November.
    6. Anton Gerunov, 2023. "Stock Returns Under Different Market Regimes: An Application of Markov Switching Models to 24 European Indices," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 18-35.
    7. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    8. Nicolai Hans & Nadja Klein & Florian Faschingbauer & Michael Schneider & Andreas Mayr, 2023. "Boosting distributional copula regression," Biometrics, The International Biometric Society, vol. 79(3), pages 2298-2310, September.
    9. Maike Hohberg & Peter Pütz & Thomas Kneib, 2020. "Treatment effects beyond the mean using distributional regression: Methods and guidance," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.
    10. Amon, Julian & Hornik, Kurt, 2022. "Is it all bafflegab? – Linguistic and meta characteristics of research articles in prestigious economics journals," Journal of Informetrics, Elsevier, vol. 16(2).
    11. Xi, Xiaojing & Mamon, Rogemar, 2011. "Parameter estimation of an asset price model driven by a weak hidden Markov chain," Economic Modelling, Elsevier, vol. 28(1-2), pages 36-46, January.
    12. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    13. Nemati, Mehdi & Saghaian, Sayed H., 2016. "Dynamics of Price Adjustment in Qualitatively Differentiated Markets in the U.S.: The Case of Organic and Conventional Apples," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229950, Southern Agricultural Economics Association.
    14. Elvio Accinelli & Juan Gabriel Brida, 2007. "Modelos económicos con múltiples regímenes," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 1(2), pages 96-115.
    15. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    16. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    17. Hunt, Julien & Devolder, Pierre, 2011. "Semi Markov regime switching interest rate models and minimal entropy measure," LIDAM Discussion Papers ISBA 2011010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Wong, Jian Cheng & Lian, Heng & Cheong, Siew Ann, 2009. "Detecting macroeconomic phases in the Dow Jones Industrial Average time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4635-4645.
    19. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    20. Houda Rharrabti Zaid, 2015. "Transmission du stress financier de la zone euro aux Pays de l’Europe Centrale et Orientale," EconomiX Working Papers 2015-37, University of Paris Nanterre, EconomiX.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:22:y:2022:i:c:p:3-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.