IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.16527.html
   My bibliography  Save this paper

The Negative Drift of a Limit Order Fill

Author

Listed:
  • Timothy DeLise

Abstract

Market making refers to a form of trading in financial markets characterized by passive orders which add liquidity to limit order books. Market makers are important for the proper functioning of financial markets worldwide. Given the importance, financial mathematics has endeavored to derive optimal strategies for placing limit orders in this context. This paper identifies a key discrepancy between popular model assumptions and the realities of real markets, specifically regarding the dynamics around limit order fills. Traditionally, market making models rely on an assumption of low-cost random fills, when in reality we observe a high-cost non-random fill behavior. Namely, limit order fills are caused by and coincide with adverse price movements, which create a drag on the market maker's profit and loss. We refer to this phenomenon as "the negative drift" associated with limit order fills. We describe a discrete market model and prove theoretically that the negative drift exists. We also provide a detailed empirical simulation using one of the most traded financial instruments in the world, the 10 Year US Treasury Bond futures, which also confirms its existence. To our knowledge, this is the first paper to describe and prove this phenomenon in such detail.

Suggested Citation

  • Timothy DeLise, 2024. "The Negative Drift of a Limit Order Fill," Papers 2407.16527, arXiv.org.
  • Handle: RePEc:arx:papers:2407.16527
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.16527
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anatoliy Swishchuk & Aiden Huffman, 2018. "General Compound Hawkes Processes in Limit Order Books," Papers 1812.02298, arXiv.org.
    2. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    3. Myles Sjogren & Timothy DeLise, 2021. "General Compound Hawkes Processes for Mid-Price Prediction," Papers 2110.07075, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Lalor & Anatoliy Swishchuk, 2024. "Reinforcement Learning in Non-Markov Market-Making," Papers 2410.14504, arXiv.org, revised Nov 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy Swishchuk, 2020. "Stochastic Modelling of Big Data in Finance," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1613-1630, December.
    2. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    3. Roza Galeeva & Ehud Ronn, 2022. "Oil futures volatility smiles in 2020: Why the bachelier smile is flatter," Review of Derivatives Research, Springer, vol. 25(2), pages 173-187, July.
    4. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    5. Kanamura, Takashi & Bunn, Derek W., 2022. "Market making and electricity price formation in Japan," Energy Economics, Elsevier, vol. 107(C).
    6. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    7. Leo Ardon & Nelson Vadori & Thomas Spooner & Mengda Xu & Jared Vann & Sumitra Ganesh, 2021. "Towards a fully RL-based Market Simulator," Papers 2110.06829, arXiv.org, revised Nov 2021.
    8. Yang, Qing-Qing & Ching, Wai-Ki & Gu, Jia-Wen & Siu, Tak-Kuen, 2018. "Market-making strategy with asymmetric information and regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 408-433.
    9. Marina Di Giacinto & Claudio Tebaldi & Tai-Ho Wang, 2021. "Optimal order execution under price impact: A hybrid model," Papers 2112.02228, arXiv.org, revised Aug 2022.
    10. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    11. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    12. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    13. Ryan Donnelly & Zi Li, 2022. "Dynamic Inventory Management with Mean-Field Competition," Papers 2210.17208, arXiv.org.
    14. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.
    15. Jack Sarkissian, 2013. "Coupled mode theory of stock price formation," Papers 1312.4622, arXiv.org.
    16. Sofiene El Aoud & Frédéric Abergel, 2015. "A stochastic control approach for options market making," Post-Print hal-01061852, HAL.
    17. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
    18. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    19. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    20. N Baradel & B Bouchard & Ngoc Minh Dang, 2016. "Optimal trading with online parameters revisions," Working Papers hal-01304019, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.16527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.