IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.17208.html
   My bibliography  Save this paper

Dynamic Inventory Management with Mean-Field Competition

Author

Listed:
  • Ryan Donnelly
  • Zi Li

Abstract

Agents attempt to maximize expected profits earned by selling multiple units of a perishable product where their revenue streams are affected by the prices they quote as well as the distribution of other prices quoted in the market by other agents. We propose a model which captures this competitive effect and directly analyze the model in the mean-field limit as the number of agents is very large. We classify mean-field Nash equilibrium in terms of the solution to a Hamilton-Jacobi-Bellman equation and a consistency condition and use this to motivate an iterative numerical algorithm to compute equilibrium. Properties of the equilibrium pricing strategies and overall market dynamics are then investigated, in particular how they depend on the strength of the competitive interaction and the ability to oversell the product.

Suggested Citation

  • Ryan Donnelly & Zi Li, 2022. "Dynamic Inventory Management with Mean-Field Competition," Papers 2210.17208, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2210.17208
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.17208
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    2. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    3. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    4. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Optimal Portfolio Liquidation with Limit Orders," Papers 1106.3279, arXiv.org, revised Jul 2012.
    5. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    6. Anjos, Miguel F. & Cheng, Russell C. H. & Currie, Christine S. M., 2005. "Optimal pricing policies for perishable products," European Journal of Operational Research, Elsevier, vol. 166(1), pages 246-254, October.
    7. Engelbert Dockner & Steffen Jørgensen, 1988. "Optimal Pricing Strategies for New Products in Dynamic Oligopolies," Marketing Science, INFORMS, vol. 7(4), pages 315-334.
    8. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2021. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Dynamic Games and Applications, Springer, vol. 11(3), pages 463-490, September.
    9. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    10. Guillermo Gallego & Ming Hu, 2014. "Dynamic Pricing of Perishable Assets Under Competition," Management Science, INFORMS, vol. 60(5), pages 1241-1259, May.
    11. Jehoshua Eliashberg & Richard Steinberg, 1991. "Competitive Strategies for Two Firms with Asymmetric Production Cost Structures," Management Science, INFORMS, vol. 37(11), pages 1452-1473, November.
    12. Sun, Yeneng, 2006. "The exact law of large numbers via Fubini extension and characterization of insurable risks," Journal of Economic Theory, Elsevier, vol. 126(1), pages 31-69, January.
    13. M F Anjos & R C H Cheng & C S M Currie, 2004. "Maximizing revenue in the airline industry under one-way pricing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 535-541, May.
    14. Wen Zhao & Yu-Sheng Zheng, 2000. "Optimal Dynamic Pricing for Perishable Assets with Nonhomogeneous Demand," Management Science, INFORMS, vol. 46(3), pages 375-388, March.
    15. Michael Ludkovski & Xuwei Yang, 2017. "Mean Field Game Approach to Production and Exploration of Exhaustible Commodities," Papers 1710.05131, arXiv.org.
    16. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    17. Ryan Donnelly & Tim Leung, 2019. "Effort Expenditure For Cash Flow In A Mean-Field Equilibrium," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    3. Xiaofei Lu & Fr'ed'eric Abergel, 2018. "Order-book modelling and market making strategies," Papers 1806.05101, arXiv.org.
    4. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    5. Burcu Aydoğan & Ömür Uğur & Ümit Aksoy, 2023. "Optimal Limit Order Book Trading Strategies with Stochastic Volatility in the Underlying Asset," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 289-324, June.
    6. Diego Zabaljauregui, 2020. "Optimal market making under partial information and numerical methods for impulse control games with applications," Papers 2009.06521, arXiv.org.
    7. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    8. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    9. Jean-David Fermanian & Olivier Guéant & Arnaud Rachez, 2015. "Agents' Behavior on Multi-Dealer-to-Client Bond Trading Platforms," Working Papers 2015-11, Center for Research in Economics and Statistics.
    10. Olivier Guéant, 2022. "Computational methods for market making algorithms," Post-Print hal-04590381, HAL.
    11. Jean-David Fermanian & Olivier Gu'eant & Jiang Pu, 2015. "The behavior of dealers and clients on the European corporate bond market: the case of Multi-Dealer-to-Client platforms," Papers 1511.07773, arXiv.org, revised Mar 2017.
    12. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    13. C S M Currie & R C H Cheng & H K Smith, 2008. "Dynamic pricing of airline tickets with competition," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1026-1037, August.
    14. Alvaro Cartea & Luhui Gan & Sebastian Jaimungal, 2018. "Trading Cointegrated Assets with Price Impact," Papers 1807.01428, arXiv.org.
    15. Álvaro Cartea & Sebastian Jaimungal & Damir Kinzebulatov, 2016. "Algorithmic Trading With Learning," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-30, June.
    16. Etienne Chevalier & Vathana Ly Vath & Simone Scotti & Alexandre Roch, 2016. "Optimal Execution Cost For Liquidation Through A Limit Order Market," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-26, February.
    17. Bastien Baldacci & Philippe Bergault & Olivier Gu'eant, 2019. "Algorithmic market making for options," Papers 1907.12433, arXiv.org, revised Jul 2020.
    18. Philippe Bergault & Olivier Gu'eant, 2019. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Papers 1907.01225, arXiv.org, revised Sep 2022.
    19. Diego Zabaljauregui & Luciano Campi, 2019. "Optimal market making under partial information with general intensities," Papers 1902.01157, arXiv.org, revised Apr 2020.
    20. Lorig, Matthew & Zhou, Zhou & Zou, Bin, 2021. "Optimal bookmaking," European Journal of Operational Research, Elsevier, vol. 295(2), pages 560-574.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.17208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.