IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.06745.html
   My bibliography  Save this paper

Stochastic Approaches to Asset Price Analysis

Author

Listed:
  • Michael Sekatchev
  • Zhengxiang Zhou

Abstract

In this project, we propose to explore the Kalman filter's performance for estimating asset prices. We begin by introducing a stochastic mean-reverting processes, the Ornstein-Uhlenbeck (OU) model. After this we discuss the Kalman filter in detail, and its application with this model. After a demonstration of the Kalman filter on a simulated OU process and a discussion of maximum likelihood estimation (MLE) for estimating model parameters, we apply the Kalman filter with the OU process and trailing parameter estimation to real stock market data. We finish by proposing a simple day-trading algorithm using the Kalman filter with the OU process and backtest its performance using Apple's stock price. We then move to the Heston model, a combination of Geometric Brownian Motion and the OU process. Maximum likelihood estimation is commonly used for Heston model parameter estimation, which results in very complex forms. Here we propose an alternative but easier way of parameter estimation, called the method of moments (MOM). After the derivation of these estimators, we again apply this method to real stock data to assess its performance.

Suggested Citation

  • Michael Sekatchev & Zhengxiang Zhou, 2024. "Stochastic Approaches to Asset Price Analysis," Papers 2407.06745, arXiv.org.
  • Handle: RePEc:arx:papers:2407.06745
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.06745
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Eduardo de Moura & Adrian Pizzinga & Jorge Zubelli, 2016. "A pairs trading strategy based on linear state space models and the Kalman filter," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1559-1573, October.
    2. Jarosław Gruszka & Janusz Szwabiński, 2023. "Parameter Estimation of the Heston Volatility Model with Jumps in the Asset Prices," Econometrics, MDPI, vol. 11(2), pages 1-26, June.
    3. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    2. Choi, Gahyun & Park, Kwangyeol & Yi, Eojin & Ahn, Kwangwon, 2023. "Price fairness: Clean energy stocks and the overall market," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    4. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    5. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
    6. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    7. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
    8. Annalena Mickel & Andreas Neuenkirch, 2021. "The Weak Convergence Rate of Two Semi-Exact Discretization Schemes for the Heston Model," Risks, MDPI, vol. 9(1), pages 1-38, January.
    9. repec:hum:wpaper:sfb649dp2007-067 is not listed on IDEAS
    10. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    11. Masaaki Fujii & Akihiko Takahashi, 2012. "Perturbative Expansion of FBSDE in an Incomplete Market with Stochastic Volatility," CIRJE F-Series CIRJE-F-840, CIRJE, Faculty of Economics, University of Tokyo.
    12. Dell'Era, Mario, 2010. "Geometrical Considerations on Heston's Market Model," MPRA Paper 21523, University Library of Munich, Germany.
    13. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    14. Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
    15. Trent Spears & Stefan Zohren & Stephen Roberts, 2023. "On statistical arbitrage under a conditional factor model of equity returns," Papers 2309.02205, arXiv.org.
    16. Mordecai Avriel & Jens Hilscher & Alon Raviv, 2013. "Inflation Derivatives Under Inflation Target Regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(10), pages 911-938, October.
    17. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    18. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    19. Liu, Peng & Tang, Ke, 2011. "The stochastic behavior of commodity prices with heteroskedasticity in the convenience yield," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 211-224, March.
    20. Adrian Pizzinga & Marcelo Fernandes, 2021. "Extensions to the invariance property of maximum likelihood estimation for affine‐transformed state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 355-371, May.
    21. Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.06745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.