IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v11y2023i2p15-d1162565.html
   My bibliography  Save this article

Parameter Estimation of the Heston Volatility Model with Jumps in the Asset Prices

Author

Listed:
  • Jarosław Gruszka

    (Hugo Steinhaus Center, Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Janusz Szwabiński

    (Hugo Steinhaus Center, Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wyspiańskiego 27, 50-370 Wrocław, Poland)

Abstract

The parametric estimation of stochastic differential equations (SDEs) has been the subject of intense studies already for several decades. The Heston model, for instance, is based on two coupled SDEs and is often used in financial mathematics for the dynamics of asset prices and their volatility. Calibrating it to real data would be very useful in many practical scenarios. It is very challenging, however, since the volatility is not directly observable. In this paper, a complete estimation procedure of the Heston model without and with jumps in the asset prices is presented. Bayesian regression combined with the particle filtering method is used as the estimation framework. Within the framework, we propose a novel approach to handle jumps in order to neutralise their negative impact on the estimates of the key parameters of the model. An improvement in the sampling in the particle filtering method is discussed as well. Our analysis is supported by numerical simulations of the Heston model to investigate the performance of the estimators. In addition, a practical follow-along recipe is given to allow finding adequate estimates from any given data.

Suggested Citation

  • Jarosław Gruszka & Janusz Szwabiński, 2023. "Parameter Estimation of the Heston Volatility Model with Jumps in the Asset Prices," Econometrics, MDPI, vol. 11(2), pages 1-26, June.
  • Handle: RePEc:gam:jecnmx:v:11:y:2023:i:2:p:15-:d:1162565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/11/2/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/11/2/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    4. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Sekatchev & Zhengxiang Zhou, 2024. "Stochastic Approaches to Asset Price Analysis," Papers 2407.06745, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    2. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    3. repec:qut:auncer:2012_11 is not listed on IDEAS
    4. F. Cacace & A. Germani & M. Papi, 2019. "On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 503-525, December.
    5. Andreas Kaeck & Carol Alexander, 2013. "Stochastic Volatility Jump†Diffusions for European Equity Index Dynamics," European Financial Management, European Financial Management Association, vol. 19(3), pages 470-496, June.
    6. Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2017. "Inference on Self‐Exciting Jumps in Prices and Volatility Using High‐Frequency Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 504-532, April.
    7. Raggi, Davide & Bordignon, Silvano, 2006. "Comparing stochastic volatility models through Monte Carlo simulations," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1678-1699, April.
    8. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    9. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    10. Andreas Kaeck & Carol Alexander, 2010. "Stochastic Volatility Jump-Diffusions for Equity Index Dynamics," ICMA Centre Discussion Papers in Finance icma-dp2010-06, Henley Business School, University of Reading.
    11. Gudkov, Nikolay & Ignatieva, Katja, 2021. "Electricity price modelling with stochastic volatility and jumps: An empirical investigation," Energy Economics, Elsevier, vol. 98(C).
    12. Jaros{l}aw Gruszka & Janusz Szwabi'nski, 2022. "Parameter Estimation of the Heston Volatility Model with Jumps in the Asset Prices," Papers 2211.14814, arXiv.org.
    13. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    14. Pollastri, Alessandro & Rodrigues, Paulo & Schlag, Christian & Seeger, Norman J., 2023. "A jumping index of jumping stocks? An MCMC analysis of continuous-time models for individual stocks," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 322-341.
    15. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    16. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    17. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    18. Jaros{l}aw Gruszka & Janusz Szwabi'nski, 2023. "Portfolio Optimisation via the Heston Model Calibrated to Real Asset Data," Papers 2302.01816, arXiv.org.
    19. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    20. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    21. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:11:y:2023:i:2:p:15-:d:1162565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.