IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.02901.html
   My bibliography  Save this paper

Basket Options with Volatility Skew: Calibrating a Local Volatility Model by Sample Rearrangement

Author

Listed:
  • Nicola F. Zaugg
  • Lech A. Grzelak

Abstract

The pricing of derivatives tied to baskets of assets demands a sophisticated framework that aligns with the available market information to capture the intricate non-linear dependency structure among the assets. We describe the dynamics of the multivariate process of constituents with a copula model and propose an efficient method to extract the dependency structure from the market. The proposed method generates coherent sets of samples of the constituents process through systematic sampling rearrangement. These samples are then utilized to calibrate a local volatility model (LVM) of the basket process, which is used to price basket derivatives. We show that the method is capable of efficiently pricing basket options based on a large number of basket constituents, accomplishing the calibration process within a matter of seconds, and achieving near-perfect calibration to the index options of the market.

Suggested Citation

  • Nicola F. Zaugg & Lech A. Grzelak, 2024. "Basket Options with Volatility Skew: Calibrating a Local Volatility Model by Sample Rearrangement," Papers 2407.02901, arXiv.org.
  • Handle: RePEc:arx:papers:2407.02901
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.02901
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicole Branger & Christian Schlag, 2004. "Why is the Index Smile So Steep?," Review of Finance, European Finance Association, vol. 8(1), pages 109-127.
    2. Guoping Xu & Harry Zheng, 2010. "Basket Options Valuation for a Local Volatility Jump-Diffusion Model with the Asymptotic Expansion Method," Papers 1003.1848, arXiv.org.
    3. van den Goorbergh, Rob W.J. & Genest, Christian & Werker, Bas J.M., 2005. "Bivariate option pricing using dynamic copula models," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 101-114, August.
    4. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    5. Bedendo, Mascia & Campolongo, Francesca & Joossens, Elisabeth & Saita, Francesco, 2010. "Pricing multiasset equity options: How relevant is the dependence function?," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 788-801, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    2. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    3. Khreshna Syuhada & Arief Hakim, 2020. "Modeling risk dependence and portfolio VaR forecast through vine copula for cryptocurrencies," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-34, December.
    4. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    5. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    6. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    7. Akihiko Takahashi & Toshihiro Yamada, 2013. "On Error Estimates for Asymptotic Expansions with Malliavin Weights -Application to Stochastic Volatility Model-," CARF F-Series CARF-F-324, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Mar 2014.
    8. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2021. "A model-free approach to multivariate option pricing," Review of Derivatives Research, Springer, vol. 24(2), pages 135-155, July.
    9. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    10. Kenichiro Shiraya & Akihiko Takahashi, 2014. "Pricing Basket Options under Local Stochastic Volatility with Jumps," CIRJE F-Series CIRJE-F-913, CIRJE, Faculty of Economics, University of Tokyo.
    11. Barrieu, Pauline & Scandolo, Giacomo, 2014. "Assessing financial model risk," LSE Research Online Documents on Economics 60084, London School of Economics and Political Science, LSE Library.
    12. Mainik, Georg, 2015. "Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 197-216.
    13. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    14. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.
    15. Hofert, Marius & McNeil, Alexander J., 2015. "Subadditivity of Value-at-Risk for Bernoulli random variables," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 79-88.
    16. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    17. Kenichiro Shiraya & Akihiko Takahashi, 2015. "An approximation formula for basket option prices under local stochastic volatility with jumps: an application to commodity markets," CARF F-Series CARF-F-361, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.
    18. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.
    19. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    20. repec:hal:journl:hal-00880258 is not listed on IDEAS
    21. Fabio Busetti & Andrew Harvey, 2011. "When is a Copula Constant? A Test for Changing Relationships," Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 106-131, Winter.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.02901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.