IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.19414.html
   My bibliography  Save this paper

Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder

Author

Listed:
  • Parley R Yang
  • Alexander Y Shestopaloff

Abstract

We demonstrate the use of Conditional Variational Encoder (CVAE) to improve the forecasts of daily stock volume time series in both short and long term forecasting tasks, with the use of advanced information of input variables such as rebalancing dates. CVAE generates non-linear time series as out-of-sample forecasts, which have better accuracy and closer fit of correlation to the actual data, compared to traditional linear models. These generative forecasts can also be used for scenario generation, which aids interpretation. We further discuss correlations in non-stationary time series and other potential extensions from the CVAE forecasts.

Suggested Citation

  • Parley R Yang & Alexander Y Shestopaloff, 2024. "Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder," Papers 2406.19414, arXiv.org.
  • Handle: RePEc:arx:papers:2406.19414
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.19414
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2013. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88, December.
    2. Olivier Guéant & Iuliia Manziuk & Jiang Pu, 2020. "Accelerated share repurchase and other buyback programs: what neural networks can bring," Quantitative Finance, Taylor & Francis Journals, vol. 20(8), pages 1389-1404, August.
    3. Mohamed Hamdouche & Pierre Henry-Labordere & Huyên Pham, 2022. "Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 29(6), pages 439-456, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastien Baldacci & Philippe Bergault & Olivier Gu'eant, 2024. "Dispensing with optimal control: a new approach for the pricing and management of share buyback contracts," Papers 2404.13754, arXiv.org, revised Jul 2024.
    2. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    3. Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.
    4. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    5. Xuefeng Gao & S. J. Deng, 2014. "Hydrodynamic limit of order book dynamics," Papers 1411.7502, arXiv.org, revised Feb 2016.
    6. Julio A. Crego, 2017. "Short Selling Ban and Intraday Dynamics," Working Papers wp2018_1715, CEMFI.
    7. Rama Cont & Lakshithe Wagalath, 2014. "Institutional Investors and the Dependence Structure of Asset Returns," Working Papers 2014-ACF-01, IESEG School of Management.
    8. Lorenzo Lucchese & Mikko Pakkanen & Almut Veraart, 2022. "The Short-Term Predictability of Returns in Order Book Markets: a Deep Learning Perspective," Papers 2211.13777, arXiv.org, revised Oct 2023.
    9. M. Alessandra Crisafi & Andrea Macrina, 2014. "Simultaneous Trading in 'Lit' and Dark Pools," Papers 1405.2023, arXiv.org, revised Jan 2016.
    10. Kaj Nyström & Sidi Mohamed Ould Aly & Changyong Zhang, 2014. "Market Making And Portfolio Liquidation Under Uncertainty," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1-33.
    11. Laura Leal & Mathieu Lauri`ere & Charles-Albert Lehalle, 2020. "Learning a functional control for high-frequency finance," Papers 2006.09611, arXiv.org, revised Feb 2021.
    12. Juri Hinz & Jeremy Yee, 2017. "An Algorithmic Approach to Optimal Asset Liquidation Problems," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(2), pages 109-129, June.
    13. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    15. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    16. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    17. Nauta, Bert-Jan, 2013. "Discounting Cashflows from Illiquid Assets on Bank Balance Sheets," MPRA Paper 54781, University Library of Munich, Germany, revised 22 Oct 2013.
    18. Cameron K. Murray, 2022. "A Housing Supply Absorption Rate Equation," The Journal of Real Estate Finance and Economics, Springer, vol. 64(2), pages 228-246, February.
    19. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    20. Rannou, Yves, 2017. "Liquidity, information, strategic trading in an electronic order book: New insights from the European carbon markets," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 779-808.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.19414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.