IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1405.2023.html
   My bibliography  Save this paper

Simultaneous Trading in 'Lit' and Dark Pools

Author

Listed:
  • M. Alessandra Crisafi
  • Andrea Macrina

Abstract

We consider an optimal trading problem over a finite period of time during which an investor has access to both a standard exchange and a dark pool. We take the exchange to be an order-driven market and propose a continuous-time setup for the best bid price and the market spread, both modelled by L\'evy processes. Effects on the best bid price arising from the arrival of limit buy orders at more favourable prices, the incoming market sell orders potentially walking the book, and deriving from the cancellations of limit sell orders at the best ask price are incorporated in the proposed price dynamics. A permanent impact that occurs when 'lit' pool trades cannot be avoided is built in, and an instantaneous impact that models the slippage, to which all 'lit' exchange trades are subject, is also considered. We assume that the trading price in the dark pool is the mid-price and that no fees are due for posting orders. We allow for partial trade executions in the dark pool, and we find the optimal trading strategy in both venues. Since the mid-price is taken from the exchange, the dynamics of the limit order book also affects the optimal allocation of shares in the dark pool. We propose a general objective function and we show that, subject to suitable technical conditions, the value function can be characterised by the unique continuous viscosity solution to the associated partial integro differential equation. We present two explicit examples of the price and the spread models, and derive the associated optimal trading strategy numerically. We discuss the various degrees of the agent's risk aversion and further show that roundtrips, i.e. posting the remaining inventory in the dark pool at every point in time, are not necessarily beneficial.

Suggested Citation

  • M. Alessandra Crisafi & Andrea Macrina, 2014. "Simultaneous Trading in 'Lit' and Dark Pools," Papers 1405.2023, arXiv.org, revised Jan 2016.
  • Handle: RePEc:arx:papers:1405.2023
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1405.2023
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    2. Sabrina Buti & Barbara Rindi & Ingrid M. Werner, 2011. "Dark Pool Trading Strategies," Working Papers 421, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    3. Terrence Hendershott & Haim Mendelson, 2000. "Crossing Networks and Dealer Markets: Competition and Performance," Journal of Finance, American Finance Association, vol. 55(5), pages 2071-2115, October.
    4. Daniëls, Tijmen R. & Dönges, Jutta & Heinemann, Frank, 2013. "Crossing network versus dealer market: Unique equilibrium in the allocation of order flow," European Economic Review, Elsevier, vol. 62(C), pages 41-57.
    5. Degryse, Hans & Van Achter, Mark & Wuyts, Gunther, 2009. "Dynamic order submission strategies with competition between a dealer market and a crossing network," Journal of Financial Economics, Elsevier, vol. 91(3), pages 319-338, March.
    6. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2013. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88, December.
    7. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    8. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    9. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    10. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    11. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katia Colaneri & Tiziano De Angelis, 2019. "A class of recursive optimal stopping problems with applications to stock trading," Papers 1905.02650, arXiv.org, revised Jun 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Alessandra Crisafi & Andrea Macrina, 2016. "Simultaneous Trading In ‘Lit’ And Dark Pools," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-33, December.
    2. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Haoxiang Zhu, 2014. "Do Dark Pools Harm Price Discovery?," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 747-789.
    6. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    7. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    8. Onur, Esen & Roberts, John S. & Tuzun, Tugkan, 2023. "Trader positions and aggregate portfolio demand," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    9. Phillip Monin, 2014. "Hedging Market Risk in Optimal Liquidation," Working Papers 14-08, Office of Financial Research, US Department of the Treasury.
    10. Gomber, Peter & Sagade, Satchit & Theissen, Erik & Weber, Moritz Christian & Westheide, Christian, 2016. "Spoilt for choice: Order routing decisions in fragmented equity markets," CFR Working Papers 16-04, University of Cologne, Centre for Financial Research (CFR).
    11. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    12. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-24, December.
    13. Linlin Ye, 2016. "Understanding the Impacts of Dark Pools on Price Discovery," Papers 1612.08486, arXiv.org.
    14. Peter Kratz & Torsten Sch�neborn, 2014. "Optimal liquidation in dark pools," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1519-1539, September.
    15. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    16. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    17. van Kervel, V.L., 2013. "Competition between stock exchanges and optimal trading," Other publications TiSEM 5c608a0f-527d-441d-a910-e, Tilburg University, School of Economics and Management.
    18. David Evangelista & Yuri Saporito & Yuri Thamsten, 2022. "Price formation in financial markets: a game-theoretic perspective," Papers 2202.11416, arXiv.org.
    19. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    20. David Evangelista & Yuri Thamsten, 2023. "Approximately optimal trade execution strategies under fast mean-reversion," Papers 2307.07024, arXiv.org, revised Aug 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.2023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.