IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.15461.html
   My bibliography  Save this paper

Optimal market-neutral currency trading on the cryptocurrency platform

Author

Listed:
  • Hongshen Yang
  • Avinash Malik

Abstract

This research proposes a novel arbitrage approach in multivariate pair trading, termed the Optimal Trading Technique (OTT). We present a method for selectively forming a "bucket" of fiat currencies anchored to cryptocurrency for monitoring and exploiting trading opportunities simultaneously. To address quantitative conflicts from multiple trading signals, a novel bi-objective convex optimization formulation is designed to balance investor preferences between profitability and risk tolerance. We understand that cryptocurrencies carry significant financial risks. Therefore this process includes tunable parameters such as volatility penalties and action thresholds. In experiments conducted in the cryptocurrency market from 2020 to 2022, which encompassed a vigorous bull run followed by a bear run, the OTT achieved an annualized profit of 15.49%. Additionally, supplementary experiments detailed in the appendix extend the applicability of OTT to other major cryptocurrencies in the post-COVID period, validating the model's robustness and effectiveness in various market conditions. The arbitrage operation offers a new perspective on trading, without requiring external shorting or holding the intermediate during the arbitrage period. As a note of caution, this study acknowledges the high-risk nature of cryptocurrency investments, which can be subject to significant volatility and potential loss.

Suggested Citation

  • Hongshen Yang & Avinash Malik, 2024. "Optimal market-neutral currency trading on the cryptocurrency platform," Papers 2405.15461, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2405.15461
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.15461
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    2. Perlin, M., 2007. "M of a kind: A Multivariate Approach at Pairs Trading," MPRA Paper 8309, University Library of Munich, Germany.
    3. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    4. Richard S. Dale & Johnnie E. V. Johnson & Leilei Tang, 2005. "Financial markets can go mad: evidence of irrational behaviour during the South Sea Bubble," Economic History Review, Economic History Society, vol. 58(2), pages 233-271, May.
    5. Dragan Miljkovic, 1999. "The Law of One Price in International Trade: A Critical Review," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 21(1), pages 126-139.
    6. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    7. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    8. Christian L Dunis & Richard Ho, 2005. "Cointegration portfolios of European equities for index tracking and market neutral strategies," Journal of Asset Management, Palgrave Macmillan, vol. 6(1), pages 33-52, June.
    9. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Hou, Ai Jun & Wang, Weining, 2018. "Pricing Cryptocurrency options: the case of CRIX and Bitcoin," IRTG 1792 Discussion Papers 2018-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    11. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    12. Isard, Peter, 1977. "How Far Can We Push the "Law of One Price"?," American Economic Review, American Economic Association, vol. 67(5), pages 942-948, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    2. Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun, 2017. "Searching for Inefficiencies in Exchange Rate Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 405-432, March.
    3. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
    5. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    6. Emmanouil Mavrakis & Christos Alexakis, 2018. "Statistical Arbitrage Strategies under Different Market Conditions: The Case of the Greek Banking Sector," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2), pages 159-185, August.
    7. Pietro Saggese & Esther Segalla & Michael Sigmund & Burkhard Raunig & Felix Zangerl & Bernhard Haslhofer, 2023. "Assessing the Solvency of Virtual Asset Service Providers: Are Current Standards Sufficient?," Papers 2309.16408, arXiv.org, revised Apr 2024.
    8. Youssef El-Khatib & Abdulnasser Hatemi-J, 2023. "On a regime switching illiquid high volatile prediction model for cryptocurrencies," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 51(2), pages 485-498, July.
    9. Nan, Zheng & Kaizoji, Taisei, 2019. "Market efficiency of the bitcoin exchange rate: Weak and semi-strong form tests with the spot, futures and forward foreign exchange rates," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 273-281.
    10. Haji Suleman Ali & Feiyan Jia & Zhiyuan Lou & Jingui Xie, 2023. "Effect of blockchain technology initiatives on firms’ market value," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-35, December.
    11. Rubaiyat Ahsan Bhuiyan & Afzol Husain & Changyong Zhang, 2023. "Diversification evidence of bitcoin and gold from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    12. Haican Diao & Guoshan Liu & Zhuangming Zhu, 2020. "Research on a stock-matching trading strategy based on bi-objective optimization," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-14, December.
    13. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Osman, Myriam Ben & Urom, Christian & Guesmi, Khaled & Benkraiem, Ramzi, 2024. "Economic sentiment and the cryptocurrency market in the post-COVID-19 era," International Review of Financial Analysis, Elsevier, vol. 91(C).
    15. Ahmed BenSaïda, 2023. "The linkage between Bitcoin and foreign exchanges in developed and emerging markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    16. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    17. Bernhard Haslhofer & Burkhard Raunig & Pietro Saggase & Esther Segalla & Michael Sigmund & Felix Zangerl, 2023. "Assessing the Solvency of Virtual Asset Service Providers: Are Current Standards Sufficient? (Pietro Saggese, Esther Segalla, Michael Sigmund, Burkhard Raunig, Felix Zangerl, Bernhard Haslhofer)," Working Papers 248, Oesterreichische Nationalbank (Austrian Central Bank).
    18. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    19. Geetu Aggarwal & Navdeep Aggarwal, 2021. "Risk-adjusted Returns from Statistical Arbitrage Opportunities in Indian Stock Futures Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(1), pages 79-99, March.
    20. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.15461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.