IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v63y2024i4d10.1007_s11156-024-01293-1.html
   My bibliography  Save this article

Asymptotic analyses for trend-stationary pairs trading strategy in high-frequency trading

Author

Listed:
  • Tian-Shyr Dai

    (National Yang Ming Chiao Tung University
    National Chengchi University)

  • Yi-Jen Luo

    (National Yang Ming Chiao Tung University)

  • Hao-Han Chang

    (National Yang Ming Chiao Tung University)

  • Chu-Lan Kao

    (National Yang Ming Chiao Tung University)

  • Kuan-Lun Wang

    (National Taiwan University)

  • Liang-Chih Liu

    (National Taipei University of Technology)

Abstract

Conventional pairs trading strategies (PTS) exploit the mean-reverting nature of stock pairs with stationary value processes. This paper elevates PTS by integrating trend-stationary value processes, thereby enhancing profitability and expanding trading opportunities. Our asymptotic analysis reveals that the value process, adjusted for the derived slant asymptote, adheres to a stationary distribution. By capitalizing on price deviations and value trends, the strategy profits by longing undervalued or shorting overvalued processes based on their respective upward or downward slopes. Positions are strategically closed when they revert to the asymptote, thus securing profits and avoiding counterproductive trades against prevailing trends. In this context, conventional stationary-based PTS can be considered a specific instance of our broader approach when the asymptote is non-trended. To refine trade selection, we evaluate the mean-reversion velocity, monitoring the frequency at which the portfolio's value crosses the slant asymptote to exclude high-risk pairs. Empirical evidence underscores our method's superiority over conventional stationary PTS, delivering higher average returns per trade, improved Sharpe ratios, and increased trading opportunities, even amidst the financial uncertainties of the COVID era.

Suggested Citation

  • Tian-Shyr Dai & Yi-Jen Luo & Hao-Han Chang & Chu-Lan Kao & Kuan-Lun Wang & Liang-Chih Liu, 2024. "Asymptotic analyses for trend-stationary pairs trading strategy in high-frequency trading," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1391-1411, November.
  • Handle: RePEc:kap:rqfnac:v:63:y:2024:i:4:d:10.1007_s11156-024-01293-1
    DOI: 10.1007/s11156-024-01293-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11156-024-01293-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-024-01293-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sylvia Endres & Johannes Stübinger, 2019. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 19(10), pages 1727-1740, October.
    2. Muhammad Shahbaz & Ijaz Ur Rehman & Talat Afza, 2016. "Macroeconomic determinants of stock market capitalization in an emerging market: fresh evidence from cointegration with unknown structural breaks," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 9(1), pages 75-99, March.
    3. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    4. Giner, Javier, 2021. "Orthant-based variance decomposition in investment portfolios," European Journal of Operational Research, Elsevier, vol. 291(2), pages 497-511.
    5. Yam, Sheung Chi Phillip & Yang, Hailiang & Yuen, Fei Lung, 2016. "Optimal asset allocation: Risk and information uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 554-561.
    6. Nicolas Huck & Komivi Afawubo, 2015. "Pairs trading and selection methods: is cointegration superior?," Applied Economics, Taylor & Francis Journals, vol. 47(6), pages 599-613, February.
    7. Binh Do & Robert Faff, 2012. "Are Pairs Trading Profits Robust To Trading Costs?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 35(2), pages 261-287, June.
    8. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    9. Xiang, Yun & He, Jiaxuan, 2022. "Pairs trading and asset pricing," Pacific-Basin Finance Journal, Elsevier, vol. 72(C).
    10. Nicolas Huck, 2015. "Pairs trading: does volatility timing matter?," Applied Economics, Taylor & Francis Journals, vol. 47(57), pages 6239-6256, December.
    11. João Frois Caldeira & Gulherme Valle Moura, 2013. "Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(1), pages 49-80.
    12. P. Eggebrecht & E. Lütkebohmert, 2023. "A hybrid convolutional neural network with long short-term memory for statistical arbitrage," Quantitative Finance, Taylor & Francis Journals, vol. 23(4), pages 595-613, April.
    13. Mao Liang Li & Chin Man Chui & Chang Qing Li, 2014. "Is pairs trading profitable on China AH-share markets?," Applied Economics Letters, Taylor & Francis Journals, vol. 21(16), pages 1116-1121, November.
    14. Jacobs, Heiko & Weber, Martin, 2015. "On the determinants of pairs trading profitability," Journal of Financial Markets, Elsevier, vol. 23(C), pages 75-97.
    15. Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
    16. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    17. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    18. Binh Do & Robert Faff, 2010. "Does Simple Pairs Trading Still Work?," Financial Analysts Journal, Taylor & Francis Journals, vol. 66(4), pages 83-95, July.
    19. Bo Liu & Lo-Bin Chang & Hélyette Geman, 2017. "Intraday pairs trading strategies on high frequency data: the case of oil companies," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 87-100, January.
    20. Hansen, Peter Reinhard, 2000. "The Johansen-Granger Representation Theorem: An Explicit Expression for I(1) Processes," University of California at San Diego, Economics Working Paper Series qt832256dg, Department of Economics, UC San Diego.
    21. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    22. Sabino da Silva, Fernando A.B. & Ziegelmann, Flavio A. & Caldeira, João F., 2023. "A pairs trading strategy based on mixed copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 16-34.
    23. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    24. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    2. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Marianna Brunetti & Roberta De Luca, 2023. "Pairs trading in the index options market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
    4. Marianna Brunetti & Roberta de Luca, 2022. "Sensitivity of profitability in cointegration-based pairs trading," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0090, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    5. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Danni Chen & Jing Cui & Yan Gao & Leilei Wu, 2017. "Pairs trading in Chinese commodity futures markets: an adaptive cointegration approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(5), pages 1237-1264, December.
    7. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    8. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    9. Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
    10. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    11. Marianna Brunetti & Roberta De Luca, 2023. "Pre-selection in cointegration-based pairs trading," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1611-1640, December.
    12. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. GholamReza Keshavarz Haddad & Hassan Talebi, 2023. "The profitability of pair trading strategy in stock markets: Evidence from Toronto stock exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 193-207, January.
    14. Sabino da Silva, Fernando A.B. & Ziegelmann, Flavio A. & Caldeira, João F., 2023. "A pairs trading strategy based on mixed copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 16-34.
    15. Karen Balladares & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Angel Sánchez-Granero, 2021. "Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
    16. Zhe Huang & Franck Martin, 2017. "Optimal pairs trading strategies in a cointegration framework," Working Papers halshs-01566803, HAL.
    17. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    18. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
    19. Baiquan Ma & Robert Ślepaczuk, 2022. "The profitability of pairs trading strategies on Hong-Kong stock market: distance, cointegration, and correlation methods," Working Papers 2022-02, Faculty of Economic Sciences, University of Warsaw.
    20. Andreas Mikkelsen, 2018. "Pairs trading: the case of Norwegian seafood companies," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 303-318, January.

    More about this item

    Keywords

    Pairs trading; Trend-stationary; Cointegration; Asymptotic mean crossing rate filter; High-frequency;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:63:y:2024:i:4:d:10.1007_s11156-024-01293-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.