IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2911-d1480990.html
   My bibliography  Save this article

Anti-Persistent Values of the Hurst Exponent Anticipate Mean Reversion in Pairs Trading: The Cryptocurrencies Market as a Case Study

Author

Listed:
  • Mar Grande

    (Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Av Puerta de Hierro 2, 28040 Madrid, Spain
    AGrowingData, 04001 Almería, Spain)

  • Florentino Borondo

    (Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain)

  • Juan Carlos Losada

    (Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Av Puerta de Hierro 2, 28040 Madrid, Spain)

  • Javier Borondo

    (AGrowingData, 04001 Almería, Spain
    ICAI Engineering School, Universidad Pontificia de Comillas, Alberto Aguilera 23, 28015 Madrid, Spain)

Abstract

Pairs trading is a short-term speculation trading strategy based on matching a long position with a short position in two assets in the hope that their prices will return to their historical equilibrium. In this paper, we focus on identifying opportunities where mean reversion will happen quickly, as the commission costs associated with keeping the positions open for an extended period of time can eliminate excess returns. To this end, we propose the use of the local Hurst exponent as a signal to open trades in the cryptocurrencies market. We conduct a natural experiment to show that the spread of pairs with anti-persistent values of Hurst revert to their mean significantly faster. Next, we verify that this effect is universal across pairs with different levels of co-movement. Finally, we back-test several pairs trading strategies that include H < 0.5 as an indicator and check that all of them result in profits. Hence, we conclude that the Hurst exponent represents a meaningful indicator to detect pairs trading opportunities in the cryptocurrencies market.

Suggested Citation

  • Mar Grande & Florentino Borondo & Juan Carlos Losada & Javier Borondo, 2024. "Anti-Persistent Values of the Hurst Exponent Anticipate Mean Reversion in Pairs Trading: The Cryptocurrencies Market as a Case Study," Mathematics, MDPI, vol. 12(18), pages 1-14, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2911-:d:1480990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Broussard, John Paul & Vaihekoski, Mika, 2012. "Profitability of pairs trading strategy in an illiquid market with multiple share classes," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1188-1201.
    2. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    3. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    4. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    5. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    6. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    7. Ramos-Requena, J.P. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A., 2017. "Introducing Hurst exponent in pair trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 39-45.
    8. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    9. José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Ángel Sánchez-Granero, 2020. "Some Notes on the Formation of a Pair in Pairs Trading," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
    10. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    11. Binh Do & Robert Faff, 2010. "Does Simple Pairs Trading Still Work?," Financial Analysts Journal, Taylor & Francis Journals, vol. 66(4), pages 83-95, July.
    12. Bui, Quynh & Ślepaczuk, Robert, 2022. "Applying Hurst Exponent in pair trading strategies on Nasdaq 100 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    13. Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
    14. Saadet Kasman & Evrim Turgutlu & A. Duygu Ayhan, 2009. "Long memory in stock returns: evidence from the major emerging Central European stock markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(17), pages 1763-1768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    2. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Geetu Aggarwal & Navdeep Aggarwal, 2021. "Risk-adjusted Returns from Statistical Arbitrage Opportunities in Indian Stock Futures Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(1), pages 79-99, March.
    4. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    5. Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun, 2017. "Searching for Inefficiencies in Exchange Rate Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 405-432, March.
    7. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    8. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
    9. Sovan Mitra & Andreas Karathanasopoulos, 2019. "Firm Value and the Impact of Operational Management," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(1), pages 61-85, March.
    10. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    11. R. Todd Smith & Xun Xu, 2017. "A good pair: alternative pairs-trading strategies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(1), pages 1-26, February.
    12. F. N. M. de Sousa Filho & J. N. Silva & M. A. Bertella & E. Brigatti, 2020. "The leverage effect and other stylized facts displayed by Bitcoin returns," Papers 2004.05870, arXiv.org, revised Jan 2021.
    13. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    14. Sabino da Silva, Fernando A.B. & Ziegelmann, Flavio A. & Caldeira, João F., 2023. "A pairs trading strategy based on mixed copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 16-34.
    15. Karen Balladares & José Pedro Ramos-Requena & Juan Evangelista Trinidad-Segovia & Miguel Angel Sánchez-Granero, 2021. "Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
    16. Laila Taskeen Qazi & Atta Ur Rahman & Saleem Gul, 2015. "Which Pairs of Stocks should we Trade? Selection of Pairs for Statistical Arbitrage and Pairs Trading in Karachi Stock Exchange," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 54(3), pages 215-244.
    17. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    18. Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
    19. Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
    20. Alessia Naccarato & Andrea Pierini & Giovanna Ferraro, 2021. "Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment," Annals of Operations Research, Springer, vol. 299(1), pages 81-99, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2911-:d:1480990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.