IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.13169.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Evaluating Offshore Electricity Market Design Considering Endogenous Infrastructure Investments: Zonal or Nodal?

Author

Listed:
  • Michiel Kenis
  • Vladimir Dvorkin
  • Tim Schittekatte
  • Kenneth Bruninx
  • Erik Delarue
  • Audun Botterud

Abstract

Policy makers are formulating offshore energy infrastructure plans, including wind turbines, electrolyzers, and HVDC transmission lines. An effective market design is crucial to guide cost-efficient investments and dispatch decisions. This paper jointly studies the impact of offshore market design choices on the investment in offshore electrolyzers and HVDC transmission capacity. We present a bilevel model that incorporates investments in offshore energy infrastructure, day-ahead market dispatch, and potential redispatch actions near real-time to ensure transmission constraints are respected. Our findings demonstrate that full nodal pricing, i.e., nodal pricing both onshore and offshore, outperforms the onshore zonal combined with offshore nodal pricing or offshore zonal layouts. While combining onshore zonal with offshore nodal pricing can be considered as a second-best option, it generally diminishes the profitability of offshore wind farms. However, if investment costs of offshore electrolyzers are relatively low, they can serve as catalysts to increase the revenues of the offshore wind farms. This study contributes to the understanding of market designs for highly interconnected offshore power systems, offering insights into the impact of congestion pricing methodologies on investment decisions. Besides, it is useful towards understanding the interaction of offshore loads like electrolyzers with financial support mechanisms for offshore wind farms.

Suggested Citation

  • Michiel Kenis & Vladimir Dvorkin & Tim Schittekatte & Kenneth Bruninx & Erik Delarue & Audun Botterud, 2024. "Evaluating Offshore Electricity Market Design Considering Endogenous Infrastructure Investments: Zonal or Nodal?," Papers 2405.13169, arXiv.org.
  • Handle: RePEc:arx:papers:2405.13169
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.13169
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    2. Egerer, Jonas & Grimm, Veronika & Kleinert, Thomas & Schmidt, Martin & Zöttl, Gregor, 2021. "The impact of neighboring markets on renewable locations, transmission expansion, and generation investment," European Journal of Operational Research, Elsevier, vol. 292(2), pages 696-713.
    3. Eicke, Anselm & Schittekatte, Tim, 2022. "Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate," Energy Policy, Elsevier, vol. 170(C).
    4. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    5. Green, Richard & Hu, Helen & Vasilakos, Nicholas, 2011. "Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity," Energy Policy, Elsevier, vol. 39(7), pages 3992-3998, July.
    6. Veronika Grimm & Gregor Zoettl, 2013. "Investment Incentives and Electricity Spot Market Competition," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 22(4), pages 832-851, December.
    7. Lété, Quentin & Smeers, Yves & Papavasiliou, Anthony, 2022. "An analysis of zonal electricity pricing from a long-term perspective," LIDAM Reprints CORE 3201, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2022. "Emissions reduction in a second-best world: On the long-term effects of overlapping regulations," Energy Economics, Elsevier, vol. 109(C).
    2. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    3. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    4. Lété, Quentin & Smeers, Yves & Papavasiliou, Anthony, 2022. "An analysis of zonal electricity pricing from a long-term perspective," Energy Economics, Elsevier, vol. 107(C).
    5. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    6. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    7. Joachim Bertsch, & Tom Brown & Simeon Hagspiel & Lisa Just, 2017. "The relevance of grid expansion under zonal markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    8. Jonas Egerer & Veronika Grimm & Lukas M. Lang & Ulrike Pfefferer, 2022. "Kohleausstieg 2030 unter neuen Vorzeichen [The German Coal Phase-Out in 2030 Under Current Developments]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(8), pages 600-608, August.
    9. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    10. Ambrosius, Mirjam & Egerer, Jonas & Grimm, Veronika & van der Weijde, Adriaan H., 2022. "Risk aversion in multilevel electricity market models with different congestion pricing regimes," Energy Economics, Elsevier, vol. 105(C).
    11. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    12. Bjørnebye, Henrik & Hagem, Cathrine & Lind, Arne, 2018. "Optimal location of renewable power," Energy, Elsevier, vol. 147(C), pages 1203-1215.
    13. Jonas Egerer & Veronika Grimm & Lukas M. Lang & Ulrike Pfefferer & Christian Sölch, 2022. "Mobilisierung von Erzeugungskapazitäten auf dem deutschen Strommarkt [Mobilisation of Generation Capacity for the German Electricity Market]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(11), pages 846-854, November.
    14. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2019. "Regionally differentiated network fees to affect incentives for generation investment," Energy, Elsevier, vol. 177(C), pages 487-502.
    15. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    16. Yang, Yan-Shen & Xie, Bai-Chen & Tan, Xu, 2024. "Impact of green power trading mechanism on power generation and interregional transmission in China," Energy Policy, Elsevier, vol. 189(C).
    17. Janne Hirvonen & Juha Jokisalo & Risto Kosonen, 2020. "The Effect of Deep Energy Retrofit on The Hourly Power Demand of Finnish Detached Houses," Energies, MDPI, vol. 13(7), pages 1-26, April.
    18. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    19. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    20. Palovic, Martin, 2022. "Administrative congestion management meets electricity network regulation: Aligning incentives between the renewable generators and network operator," Utilities Policy, Elsevier, vol. 79(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.13169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.