IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.11329.html
   My bibliography  Save this paper

Risk-neutral valuation of options under arithmetic Brownian motions

Author

Listed:
  • Qiang Liu
  • Shuxin Guo

Abstract

On April 22, 2020, the CME Group switched to Bachelier pricing for a group of oil futures options. The Bachelier model, or more generally the arithmetic Brownian motion (ABM), is not so widely used in finance, though. This paper provides the first comprehensive survey of options pricing under ABM. Using the risk-neutral valuation, we derive formulas for European options for three underlying types, namely an underlying that does not pay dividends, an underlying that pays a continuous dividend yield, and futures. Further, we derive Black-Scholes-Merton-like partial differential equations, which can in principle be utilized to price American options numerically via finite difference.

Suggested Citation

  • Qiang Liu & Shuxin Guo, 2024. "Risk-neutral valuation of options under arithmetic Brownian motions," Papers 2405.11329, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2405.11329
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.11329
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goldenberg, David H., 1991. "A unified method for pricing options on diffusion processes," Journal of Financial Economics, Elsevier, vol. 29(1), pages 3-34, March.
    2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    3. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    4. Lioui, Abraham, 1998. "Currency risk hedging: Futures vs. forward," Journal of Banking & Finance, Elsevier, vol. 22(1), pages 61-81, January.
    5. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    6. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    7. Tucker, A. L. & Wei, J. Z., 1998. "Valuation of LIBOR-Contingent FX options," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 249-277, April.
    8. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    9. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
    10. Eckhard Platen, 2005. "An Alternative Interest Rate Term Structure Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 717-735.
    11. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    12. Roberto Baviera, 2017. "Back-of-the-envelope swaptions in a very parsimonious multicurve interest rate model," Papers 1712.06466, arXiv.org.
    13. Issler, João Victor, 1995. "Estimating the term structure of volatility and fixed income derivative pricing," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 272, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    14. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    15. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    16. Bujar Huskaj & Marcus Nossman, 2013. "A Term Structure Model for VIX Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(5), pages 421-442, May.
    17. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    18. Abraham Lioui, 2005. "Stochastic dividend yields and derivatives pricing in complete markets," Review of Derivatives Research, Springer, vol. 8(3), pages 151-175, December.
    19. Lian, Yu-Min & Chen, Jun-Home, 2021. "Pricing virtual currency-linked derivatives with time-inhomogeneity," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 424-439.
    20. Dan Pirjol & Lingjiong Zhu, 2019. "Explosion in the quasi-Gaussian HJM model," Papers 1908.07102, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.11329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.