IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.05474.html
   My bibliography  Save this paper

Dynamic reinsurance design with heterogeneous beliefs under the mean-variance framework

Author

Listed:
  • Junyi Guo
  • Xia Han
  • Hao Wang

Abstract

This paper investigates the dynamic reinsurance design problem under the mean-variance criterion, incorporating heterogeneous beliefs between the insurer and the reinsurer, and introducing an incentive compatibility constraint to address moral hazard. The insurer's surplus process is modeled using the classical Cram\'er-Lundberg risk model, with the option to invest in a risk-free asset. To solve the extended Hamilton-Jacobi-Bellman (HJB) system, we apply the partitioned domain optimization technique, transforming the infinite-dimensional optimization problem into a finite-dimensional one determined by several key parameters. The resulting optimal reinsurance contracts are more complex than the standard proportional and excess-of-loss contracts commonly studied in the mean-variance literature with homogeneous beliefs. By further assuming specific forms of belief heterogeneity, we derive the parametric solutions and obtain a clear optimal equilibrium solution. Finally, we compare our results with models where the insurer and reinsurer share identical beliefs or where the incentive compatibility constraint is relaxed. Numerical examples are provided to illustrate the impact of belief heterogeneity on optimal reinsurance strategies.

Suggested Citation

  • Junyi Guo & Xia Han & Hao Wang, 2025. "Dynamic reinsurance design with heterogeneous beliefs under the mean-variance framework," Papers 2502.05474, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2502.05474
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.05474
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lv Chen & David Landriault & Bin Li & Danping Li, 2021. "Optimal dynamic risk sharing under the time‐consistent mean‐variance criterion," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 649-682, April.
    2. Eisenberg, Bennett & Ghosh, B. K., 1979. "The likelihood ratio and its applications in sequential analysis," Journal of Multivariate Analysis, Elsevier, vol. 9(1), pages 116-129, March.
    3. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    4. Boonen, Tim J. & Jiang, Wenjun, 2022. "Mean–Variance Insurance Design With Counterparty Risk And Incentive Compatibility," ASTIN Bulletin, Cambridge University Press, vol. 52(2), pages 645-667, May.
    5. Liang, Xiaoqing & Jiang, Wenjun & Zhang, Yiying, 2023. "Optimal insurance design under mean-variance preference with narrow framing," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 59-79.
    6. Junna Bi & Junyi Guo, 2013. "Optimal Mean-Variance Problem with Constrained Controls in a Jump-Diffusion Financial Market for an Insurer," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 252-275, April.
    7. Chi, Yichun & Zhuang, Sheng Chao, 2020. "Optimal insurance with belief heterogeneity and incentive compatibility," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 104-114.
    8. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    9. Guillaume Carlier & Rose-Anne Dana, 2003. "Pareto efficient insurance contracts when the insurer's cost function is discontinuous," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 871-893, June.
    10. Yichun Chi & Ming Zhou, 2017. "Optimal Reinsurance Design: A Mean-Variance Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(1), pages 1-14, January.
    11. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    12. Yuan, Yu & Han, Xia & Liang, Zhibin & Yuen, Kam Chuen, 2023. "Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework," European Journal of Operational Research, Elsevier, vol. 311(2), pages 581-595.
    13. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    14. Min Dai & Hanqing Jin & Steven Kou & Yuhong Xu, 2021. "A Dynamic Mean-Variance Analysis for Log Returns," Management Science, INFORMS, vol. 67(2), pages 1093-1108, February.
    15. Assa, Hirbod, 2015. "On optimal reinsurance policy with distortion risk measures and premiums," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 70-75.
    16. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.
    17. Zhuang, Sheng Chao & Weng, Chengguo & Tan, Ken Seng & Assa, Hirbod, 2016. "Marginal Indemnification Function formulation for optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 65-76.
    18. Chen, Lv & Shen, Yang, 2019. "Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 120-137.
    19. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel & Heras, Antonio, 2015. "Optimal reinsurance under risk and uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 61-74.
    20. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    21. Yang, Yang & Wang, Guojing & Yao, Jing, 2024. "Time-consistent reinsurance-investment games for multiple mean-variance insurers with mispricing and default risks," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 79-107.
    22. repec:dau:papers:123456789/5394 is not listed on IDEAS
    23. Yu Yuan & Zhibin Liang & Xia Han, 2022. "Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2022(4), pages 328-355, April.
    24. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    25. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    26. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    27. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    28. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lv & Shen, Yang & Su, Jianxi, 2020. "A continuous-time theory of reinsurance chains," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 129-146.
    2. Yuan, Yu & Han, Xia & Liang, Zhibin & Yuen, Kam Chuen, 2023. "Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework," European Journal of Operational Research, Elsevier, vol. 311(2), pages 581-595.
    3. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    4. Jiang, Wenjun & Hong, Hanping & Ren, Jiandong, 2021. "Pareto-optimal reinsurance policies with maximal synergy," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 185-198.
    5. Ghossoub, Mario & Zhu, Michael B., 2024. "Stackelberg equilibria with multiple policyholders," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 189-201.
    6. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    7. Ghossoub, Mario & Jiang, Wenjun & Ren, Jiandong, 2022. "Pareto-optimal reinsurance under individual risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 307-325.
    8. Tim J. Boonen, 2016. "Optimal Reinsurance with Heterogeneous Reference Probabilities," Risks, MDPI, vol. 4(3), pages 1-11, July.
    9. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    10. Tim J. Boonen & Yuyu Chen & Xia Han & Qiuqi Wang, 2024. "Optimal insurance design with Lambda-Value-at-Risk," Papers 2408.09799, arXiv.org.
    11. Zhu, Michael B. & Ghossoub, Mario & Boonen, Tim J., 2023. "Equilibria and efficiency in a reinsurance market," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 24-49.
    12. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.
    13. Ghossoub, Mario, 2019. "Optimal insurance under rank-dependent expected utility," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 51-66.
    14. David Landriault & Bin Li & Hong Li & Yuanyuan Zhang, 2024. "Contract Structure and Risk Aversion in Longevity Risk Transfers," Papers 2409.08914, arXiv.org.
    15. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    16. Zhang, Caibin & Liang, Zhibin & Yuan, Yu, 2024. "Stochastic differential investment and reinsurance game between an insurer and a reinsurer under thinning dependence structure," European Journal of Operational Research, Elsevier, vol. 315(1), pages 213-227.
    17. Boonen, Tim J. & Jiang, Wenjun, 2022. "Bilateral risk sharing in a comonotone market with rank-dependent utilities," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 361-378.
    18. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    19. Birghila, Corina & Pflug, Georg Ch., 2019. "Optimal XL-insurance under Wasserstein-type ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 30-43.
    20. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.05474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.