IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.11739.html
   My bibliography  Save this paper

Testing Mechanisms

Author

Listed:
  • Soonwoo Kwon
  • Jonathan Roth

Abstract

Economists are often interested in the mechanisms by which a particular treatment affects an outcome. This paper develops tests for the ``sharp null of full mediation'' that the treatment $D$ operates on the outcome $Y$ only through a particular conjectured mechanism (or set of mechanisms) $M$. A key observation is that if $D$ is randomly assigned and has a monotone effect on $M$, then $D$ is a valid instrumental variable for the local average treatment effect (LATE) of $M$ on $Y$. Existing tools for testing the validity of the LATE assumptions can thus be used to test the sharp null of full mediation when $M$ and $D$ are binary. We develop a more general framework that allows one to test whether the effect of $D$ on $Y$ is fully explained by a potentially multi-valued and multi-dimensional set of mechanisms $M$, allowing for relaxations of the monotonicity assumption. We further provide methods for lower-bounding the size of the alternative mechanisms when the sharp null is rejected. An advantage of our approach relative to existing tools for mediation analysis is that it does not require stringent assumptions about how $M$ is assigned; on the other hand, our approach helps to answer different questions than traditional mediation analysis by focusing on the sharp null rather than estimating average direct and indirect effects. We illustrate the usefulness of the testable implications in two empirical applications.

Suggested Citation

  • Soonwoo Kwon & Jonathan Roth, 2024. "Testing Mechanisms," Papers 2404.11739, arXiv.org.
  • Handle: RePEc:arx:papers:2404.11739
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.11739
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    2. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    3. Zhenting Sun, 2020. "Instrument Validity for Heterogeneous Causal Effects," Papers 2009.01995, arXiv.org, revised Oct 2023.
    4. Linbo Wang & James M. Robins & Thomas S. Richardson, 2017. "On falsification of the binary instrumental variable model," Biometrika, Biometrika Trust, vol. 104(1), pages 229-236.
    5. Jens Ludwig & Jeffrey R. Kling & Sendhil Mullainathan, 2011. "Mechanism Experiments and Policy Evaluations," Journal of Economic Perspectives, American Economic Association, vol. 25(3), pages 17-38, Summer.
    6. Leonardo Bursztyn & Alessandra L. González & David Yanagizawa-Drott, 2020. "Misperceived Social Norms: Women Working Outside the Home in Saudi Arabia," American Economic Review, American Economic Association, vol. 110(10), pages 2997-3029, October.
    7. Carlos A. Flores & Alfonso Flores-Lagunes, 2010. "Nonparametric Partial Identification of Causal Net and Mechanism Average Treatment Effects," Working Papers 2010-25, University of Miami, Department of Economics.
    8. Angrist, Joshua D. & Pathak, Parag A. & Zarate, Roman A., 2023. "Choice and consequence: Assessing mismatch at Chicago exam schools," Journal of Public Economics, Elsevier, vol. 223(C).
    9. Linbo Wang & James M. Robins & Thomas S. Richardson, 2017. "Erratum: On falsification of the binary instrumental variable model," Biometrika, Biometrika Trust, vol. 104(1), pages 1-1.
    10. JoonHwan Cho & Thomas M. Russell, 2018. "Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Moments," Papers 1810.03180, arXiv.org, revised May 2023.
    11. D’Haultfœuille, Xavier & Hoderlein, Stefan & Sasaki, Yuya, 2024. "Testing and relaxing the exclusion restriction in the control function approach," Journal of Econometrics, Elsevier, vol. 240(2).
    12. Huber, Martin, 2019. "A review of causal mediation analysis for assessing direct and indirect treatment effects," FSES Working Papers 500, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    2. Viviana Celli, 2019. "Causal Mediation Analysis in Economics: objectives, assumptions, models," Working Papers 12/19, Sapienza University of Rome, DISS.
    3. Viviana Celli, 2022. "Causal mediation analysis in economics: Objectives, assumptions, models," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 214-234, February.
    4. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    5. Martin Huber & Mark Schelker & Anthony Strittmatter, 2022. "Direct and Indirect Effects based on Changes-in-Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 432-443, January.
    6. Lata Gangadharan & Tarun Jain & Pushkar Maitra & Joe Vecci, 2022. "Lab-in-the-field experiments: perspectives from research on gender," The Japanese Economic Review, Springer, vol. 73(1), pages 31-59, January.
    7. Huber, Martin & Steinmayr, Andreas, 2017. "A Framework for Separating Individual Treatment Effects from Spillover, Interaction, and General Equilibrium Effects," IZA Discussion Papers 10648, Institute of Labor Economics (IZA).
    8. Eva Deuchert & Martin Huber & Mark Schelker, 2019. "Direct and Indirect Effects Based on Difference-in-Differences With an Application to Political Preferences Following the Vietnam Draft Lottery," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 710-720, October.
    9. Xuemei Fan & Ziyue Nan & Yuanhang Ma & Yingdan Zhang & Fei Han, 2021. "Research on the Spatio-Temporal Impacts of Environmental Factors on the Fresh Agricultural Product Supply Chain and the Spatial Differentiation Issue—An Empirical Research on 31 Chinese Provinces," IJERPH, MDPI, vol. 18(22), pages 1-26, November.
    10. Scott-Clayton, Judith & Minaya, Veronica, 2016. "Should student employment be subsidized? Conditional counterfactuals and the outcomes of work-study participation," Economics of Education Review, Elsevier, vol. 52(C), pages 1-18.
    11. Eduardo Fé, 2021. "Pension eligibility rules and the local causal effect of retirement on cognitive functioning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 812-841, July.
    12. Marco Doretti & Martina Raggi & Elena Stanghellini, 2022. "Exact parametric causal mediation analysis for a binary outcome with a binary mediator," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 87-108, March.
    13. Michela Bia & German Blanco & Marie Valentova, 2021. "The Causal Impact of Taking Parental Leave on Wages: Evidence from 2005 to 2015," LISER Working Paper Series 2021-08, Luxembourg Institute of Socio-Economic Research (LISER).
    14. Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
    15. Bijwaard, G.E.; & Jones, A.M.;, 2019. "Education and life-expectancy and how the relationship is mediated through changes in behaviour: a principal stratification approach for hazard rates," Health, Econometrics and Data Group (HEDG) Working Papers 19/05, HEDG, c/o Department of Economics, University of York.
    16. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    17. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    18. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Aaron K. Chatterji & Michael Findley & Nathan M. Jensen & Stephan Meier & Daniel Nielson, 2016. "Field experiments in strategy research," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 116-132, January.
    19. Kantorowicz, Jarosław & Köppl–Turyna, Monika, 2019. "Disentangling the fiscal effects of local constitutions," Journal of Economic Behavior & Organization, Elsevier, vol. 163(C), pages 63-87.
    20. Fabian Kosse & Thomas Deckers & Pia Pinger & Hannah Schildberg-Hörisch & Armin Falk, 2020. "The Formation of Prosociality: Causal Evidence on the Role of Social Environment," Journal of Political Economy, University of Chicago Press, vol. 128(2), pages 434-467.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.11739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.