IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.15220.html
   My bibliography  Save this paper

Modelling with Discretized Variables

Author

Listed:
  • Felix Chan
  • Laszlo Matyas
  • Agoston Reguly

Abstract

This paper deals with econometric models in which the dependent variable, some explanatory variables, or both are observed as censored interval data. This discretization often happens due to confidentiality of sensitive variables like income. Models using these variables cannot point identify regression parameters as the conditional moments are unknown, which led the literature to use interval estimates. Here, we propose a discretization method through which the regression parameters can be point identified while preserving data confidentiality. We demonstrate the asymptotic properties of the OLS estimator for the parameters in multivariate linear regressions for cross-sectional data. The theoretical findings are supported by Monte Carlo experiments and illustrated with an application to the Australian gender wage gap.

Suggested Citation

  • Felix Chan & Laszlo Matyas & Agoston Reguly, 2024. "Modelling with Discretized Variables," Papers 2403.15220, arXiv.org.
  • Handle: RePEc:arx:papers:2403.15220
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.15220
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klevmarken, Anders, 1982. "Missing Variables and Two-Stage Least-Squares Estimation from More than One Data Set," Working Paper Series 62, Research Institute of Industrial Economics.
    2. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    3. John Micklewright & Sylke V. Schnepf, 2010. "How reliable are income data collected with a single question?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 409-429, April.
    4. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    5. Andrew Chesher & Adam M. Rosen, 2017. "Generalized Instrumental Variable Models," Econometrica, Econometric Society, vol. 85, pages 959-989, May.
    6. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    7. Juan D. Barón & Deborah A. Cobb‐Clark, 2010. "Occupational Segregation and the Gender Wage Gap in Private‐ and Public‐Sector Employment: A Distributional Analysis," The Economic Record, The Economic Society of Australia, vol. 86(273), pages 227-246, June.
    8. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    9. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    10. Steffen Andersen & Glenn W. Harrison & Morten I. Lau & E. Elisabet Rutström, 2008. "Eliciting Risk and Time Preferences," Econometrica, Econometric Society, vol. 76(3), pages 583-618, May.
    11. Regina Riphahn & Oliver Serfling, 2005. "Item non-response on income and wealth questions," Empirical Economics, Springer, vol. 30(2), pages 521-538, September.
    12. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    13. Paul Fisher, 2019. "Does Repeated Measurement Improve Income Data Quality?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 989-1011, October.
    14. Jason Abrevaya & Chris Muris, 2020. "Interval censored regression with fixed effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 198-216, March.
    15. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    16. Peter A. Diamond & Jerry A. Hausman, 1994. "Contingent Valuation: Is Some Number Better than No Number?," Journal of Economic Perspectives, American Economic Association, vol. 8(4), pages 45-64, Fall.
    17. Xi Wang & Songnian Chen, 2022. "Partial Identification and Estimation of Semiparametric Ordered Response Models with Interval Regressor Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 830-849, August.
    18. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    19. David Pacini, 2019. "The two‐sample linear regression model with interval‐censored covariates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 66-81, January.
    20. Steffen Andersen & Glenn Harrison & Morten Lau & E. Rutström, 2009. "Elicitation using multiple price list formats," Experimental Economics, Springer;Economic Science Association, vol. 12(3), pages 365-366, September.
    21. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    22. Michael B. Coelli, 2014. "Occupational Differences and the Australian Gender Wage Gap," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 47(1), pages 44-62, March.
    23. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    24. Chi Wai Yu & Y. Jane Zhang & Sharon Xuejing Zuo, 2021. "Multiple Switching and Data Quality in the Multiple Price List," The Review of Economics and Statistics, MIT Press, vol. 103(1), pages 136-150, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    2. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers CWP05/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Beresteanu, Arie & Molchanov, Ilya & Molinari, Francesca, 2012. "Partial identification using random set theory," Journal of Econometrics, Elsevier, vol. 166(1), pages 17-32.
    4. Donald S. Poskitt & Xueyan Zhao, 2023. "Bootstrap Hausdorff Confidence Regions for Average Treatment Effect Identified Sets," Monash Econometrics and Business Statistics Working Papers 9/23, Monash University, Department of Econometrics and Business Statistics.
    5. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    6. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    7. Larry G. Epstein & Hiroaki Kaido & Kyoungwon Seo, 2016. "Robust Confidence Regions for Incomplete Models," Econometrica, Econometric Society, vol. 84, pages 1799-1838, September.
    8. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    9. Matias D. Cattaneo & Xinwei Ma & Yusufcan Masatlioglu & Elchin Suleymanov, 2020. "A Random Attention Model," Journal of Political Economy, University of Chicago Press, vol. 128(7), pages 2796-2836.
    10. Sasaki, Yuya & Takahashi, Yuya & Xin, Yi & Hu, Yingyao, 2023. "Dynamic discrete choice models with incomplete data: Sharp identification," Journal of Econometrics, Elsevier, vol. 236(1).
    11. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    12. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    13. Liao, Yuan & Simoni, Anna, 2019. "Bayesian inference for partially identified smooth convex models," Journal of Econometrics, Elsevier, vol. 211(2), pages 338-360.
    14. Christian Bontemps & Thierry Magnac, 2017. "Set Identification, Moment Restrictions, and Inference," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 103-129, September.
    15. Lee, Ying-Ying & Bhattacharya, Debopam, 2019. "Applied welfare analysis for discrete choice with interval-data on income," Journal of Econometrics, Elsevier, vol. 211(2), pages 361-387.
    16. Kyungchul Song, 2009. "Point Decisions for Interval-Identified Parameters," PIER Working Paper Archive 09-036, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Daniel Cerquera & François Laisney & Hannes Ullrich, 2014. "A Note on Regressions with Interval Data on a Regressor," Discussion Papers of DIW Berlin 1419, DIW Berlin, German Institute for Economic Research.
    18. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    19. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    20. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.15220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.