IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v84y2022i4p830-849.html
   My bibliography  Save this article

Partial Identification and Estimation of Semiparametric Ordered Response Models with Interval Regressor Data

Author

Listed:
  • Xi Wang
  • Songnian Chen

Abstract

In many micro‐data studies, the dependent variable often involves ordered categories and at least one regressor is measured by the interval rather than the precise value. This paper considers partial identification of such an ordered response model when point identification fails. We show the identified set of non‐intercept coefficients is the intersection of those for composite binary response models. We also propose a generalized modified maximum score set (GMMS) estimator. A practical implication of our finding is researchers can shrink the identified set and obtain more precise inference by designing as many as categories of response in a questionnaire during data collection. Another advantage is our theoretical finding can be used to infer the identified region in the multinomial choice model. A Monte Carlo study is conducted to illustrate the main finding in a finite sample. Finally, we apply GMMS estimator to a job satisfaction study using US data with the interval income.

Suggested Citation

  • Xi Wang & Songnian Chen, 2022. "Partial Identification and Estimation of Semiparametric Ordered Response Models with Interval Regressor Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 830-849, August.
  • Handle: RePEc:bla:obuest:v:84:y:2022:i:4:p:830-849
    DOI: 10.1111/obes.12484
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12484
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antonio Afonso & Pedro Gomes & Philipp Rother, 2009. "Ordered response models for sovereign debt ratings," Applied Economics Letters, Taylor & Francis Journals, vol. 16(8), pages 769-773.
    2. Clark, Andrew E. & Oswald, Andrew J., 1996. "Satisfaction and comparison income," Journal of Public Economics, Elsevier, vol. 61(3), pages 359-381, September.
    3. Chen, Songnian & Khan, Shakeeb, 2003. "Rates of convergence for estimating regression coefficients in heteroskedastic discrete response models," Journal of Econometrics, Elsevier, vol. 117(2), pages 245-278, December.
    4. Lee, Myoung-jae, 1992. "Median regression for ordered discrete response," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 59-77.
    5. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 835-864.
    6. Bruno S. Frey & Alois Stutzer, 2002. "What Can Economists Learn from Happiness Research?," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 402-435, June.
    7. Stefan Boes & Rainer Winkelmann, 2006. "Ordered response models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 167-181, March.
    8. Wan, Yuanyuan & Xu, Haiqing, 2015. "Inference in semiparametric binary response models with interval data," Journal of Econometrics, Elsevier, vol. 184(2), pages 347-360.
    9. David Card & Alexandre Mas & Enrico Moretti & Emmanuel Saez, 2012. "Inequality at Work: The Effect of Peer Salaries on Job Satisfaction," American Economic Review, American Economic Association, vol. 102(6), pages 2981-3003, October.
    10. Greene,William H. & Hensher,David A., 2010. "Modeling Ordered Choices," Cambridge Books, Cambridge University Press, number 9780521194204, January.
    11. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    12. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    13. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    14. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    15. Khan, Shakeeb & Tamer, Elie, 2009. "Inference on endogenously censored regression models using conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 152(2), pages 104-119, October.
    16. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    17. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    18. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Chan & Laszlo Matyas & Agoston Reguly, 2024. "Modelling with Discretized Variables," Papers 2403.15220, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    2. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2019. "Have Econometric Analyses of Happiness Data Been Futile? A Simple Truth about Happiness Scales," IZA Discussion Papers 12152, Institute of Labor Economics (IZA).
    3. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    4. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2016. "Informational content of special regressors in heteroskedastic binary response models," Journal of Econometrics, Elsevier, vol. 193(1), pages 162-182.
    5. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    6. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    7. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    8. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    9. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    10. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    11. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    12. repec:cep:stiecm:/2012/559 is not listed on IDEAS
    13. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    14. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    15. Lee, Ying-Ying & Bhattacharya, Debopam, 2019. "Applied welfare analysis for discrete choice with interval-data on income," Journal of Econometrics, Elsevier, vol. 211(2), pages 361-387.
    16. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    17. Lechner, Michael & Okasa, Gabriel, 2019. "Random Forest Estimation of the Ordered Choice Model," Economics Working Paper Series 1908, University of St. Gallen, School of Economics and Political Science.
    18. repec:diw:diwwpp:dp1419 is not listed on IDEAS
    19. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 45(3), pages 809-829, August.
    20. Tatiana Komarova, 2012. "Binary Choice Models with Discrete Regressors: Identification and Misspecification," STICERD - Econometrics Paper Series 559, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    21. Sam Asher & Paul Novosad & Charlie Rafkin, 2018. "Partial Identification of Expectations with Interval Data," Papers 1802.10490, arXiv.org.
    22. Wan, Yuanyuan & Xu, Haiqing, 2015. "Inference in semiparametric binary response models with interval data," Journal of Econometrics, Elsevier, vol. 184(2), pages 347-360.
    23. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Viewpoint: Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics, Canadian Economics Association, vol. 45(3), pages 809-829, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:84:y:2022:i:4:p:830-849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.