IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.00422.html
   My bibliography  Save this paper

Inference for Interval-Identified Parameters Selected from an Estimated Set

Author

Listed:
  • Sukjin Han
  • Adam McCloskey

Abstract

Interval identification of parameters such as average treatment effects, average partial effects and welfare is particularly common when using observational data and experimental data with imperfect compliance due to the endogeneity of individuals' treatment uptake. In this setting, a treatment or policy will typically become an object of interest to the researcher when it is either selected from the estimated set of best-performers or arises from a data-dependent selection rule. In this paper, we develop new inference tools for interval-identified parameters chosen via these forms of selection. We develop three types of confidence intervals for data-dependent and interval-identified parameters, discuss how they apply to several examples of interest and prove their uniform asymptotic validity under weak assumptions.

Suggested Citation

  • Sukjin Han & Adam McCloskey, 2024. "Inference for Interval-Identified Parameters Selected from an Estimated Set," Papers 2403.00422, arXiv.org.
  • Handle: RePEc:arx:papers:2403.00422
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.00422
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Incorrect asymptotic size of subsampling procedures based on post-consistent model selection estimators," Journal of Econometrics, Elsevier, vol. 152(1), pages 19-27, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    2. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    3. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    4. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    5. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    6. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
    7. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    8. Krasnokutskaya, Elena & Song, Kyungchul & Tang, Xun, 2022. "Estimating unobserved individual heterogeneity using pairwise comparisons," Journal of Econometrics, Elsevier, vol. 226(2), pages 477-497.
    9. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    10. Canepa Alessandra, 2022. "Small Sample Adjustment for Hypotheses Testing on Cointegrating Vectors," Journal of Time Series Econometrics, De Gruyter, vol. 14(1), pages 51-85, January.
    11. Guggenberger, Patrik, 2010. "The impact of a Hausman pretest on the size of a hypothesis test: The panel data case," Journal of Econometrics, Elsevier, vol. 156(2), pages 337-343, June.
    12. Adrian O’Hagan & Thomas Brendan Murphy & Luca Scrucca & Isobel Claire Gormley, 2019. "Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap," Computational Statistics, Springer, vol. 34(4), pages 1779-1813, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.00422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.