IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.19203.html
   My bibliography  Save this paper

On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients

Author

Listed:
  • Aur'elien Alfonsi
  • Guillaume Szulda

Abstract

We consider one-dimensional stochastic Volterra equations with jumps for which we establish conditions upon the convolution kernel and coefficients for the strong existence and pathwise uniqueness of a non-negative c\`adl\`ag solution. By using the approach recently developed in arXiv:2302.07758, we show the strong existence by using a nonnegative approximation of the equation whose convergence is proved via a variant of the Yamada--Watanabe approximation technique. We apply our results to L\'evy-driven stochastic Volterra equations. In particular, we are able to define a Volterra extension of the so-called alpha-stable Cox--Ingersoll--Ross process, which is especially used for applications in Mathematical Finance.

Suggested Citation

  • Aur'elien Alfonsi & Guillaume Szulda, 2024. "On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients," Papers 2402.19203, arXiv.org, revised Jul 2024.
  • Handle: RePEc:arx:papers:2402.19203
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.19203
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    2. Jiao, Ying & Ma, Chunhua & Scotti, Simone & Sgarra, Carlo, 2019. "A branching process approach to power markets," Energy Economics, Elsevier, vol. 79(C), pages 144-156.
    3. Alòs, Elisa & Nualart, David, 1997. "Anticipating stochastic Volterra equations," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 73-95, December.
    4. Wang, Zhidong, 2008. "Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1062-1071, July.
    5. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02412741, HAL.
    6. Fu, Zongfei & Li, Zenghu, 2010. "Stochastic equations of non-negative processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 306-330, March.
    7. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Post-Print hal-02412741, HAL.
    8. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    9. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    10. Cochran, W. George & Lee, Jung-Soon & Potthoff, Jürgen, 1995. "Stochastic Volterra equations with singular kernels," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 337-349, April.
    11. Ying Jiao & Chunhua Ma & Simone Scotti & Carlo Sgarra, 2019. "A branching process approach to power markets," Post-Print hal-02954986, HAL.
    12. Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
    13. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    14. Bondi, Alessandro & Livieri, Giulia & Pulido, Sergio, 2024. "Affine Volterra processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontana, Claudio & Gnoatto, Alessandro & Szulda, Guillaume, 2023. "CBI-time-changed Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 323-349.
    2. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    3. Jie, Lijuan & Luo, Liangqing & Zhang, Hua, 2024. "One-dimensional McKean–Vlasov stochastic Volterra equations with Hölder diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 205(C).
    4. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2022. "CBI-time-changed Lévy processes," Working Papers 05/2022, University of Verona, Department of Economics.
    5. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    6. Prömel, David J. & Scheffels, David, 2023. "Stochastic Volterra equations with Hölder diffusion coefficients," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 291-315.
    7. David J. Promel & David Scheffels, 2022. "Pathwise uniqueness for singular stochastic Volterra equations with H\"older coefficients," Papers 2212.08029, arXiv.org, revised Jul 2024.
    8. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2021. "CBI-time-changed Lévy processes for multi-currency modeling," Working Papers 14/2021, University of Verona, Department of Economics.
    9. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    10. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    11. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    12. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    13. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    14. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2017. "Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations," Papers 1711.02140, arXiv.org, revised Feb 2019.
    15. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
    16. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    17. Herv'e Andr`es & Benjamin Jourdain, 2024. "Existence, uniqueness and positivity of solutions to the Guyon-Lekeufack path-dependent volatility model with general kernels," Papers 2408.02477, arXiv.org.
    18. Jiao, Ying & Ma, Chunhua & Scotti, Simone & Sgarra, Carlo, 2019. "A branching process approach to power markets," Energy Economics, Elsevier, vol. 79(C), pages 144-156.
    19. Deya, Aurélien & Tindel, Samy, 2011. "Rough Volterra equations 2: Convolutional generalized integrals," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1864-1899, August.
    20. Bondi, Alessandro & Livieri, Giulia & Pulido, Sergio, 2024. "Affine Volterra processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.19203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.