IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i9p1062-1071.html
   My bibliography  Save this article

Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients

Author

Listed:
  • Wang, Zhidong

Abstract

We prove the existence and uniqueness as well as the continuity of the solution to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients. As application, we then study SDEs with fractional integrals.

Suggested Citation

  • Wang, Zhidong, 2008. "Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1062-1071, July.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:9:p:1062-1071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00366-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cochran, W. George & Lee, Jung-Soon & Potthoff, Jürgen, 1995. "Stochastic Volterra equations with singular kernels," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 337-349, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aur'elien Alfonsi & Ahmed Kebaier, 2021. "Approximation of Stochastic Volterra Equations with kernels of completely monotone type," Papers 2102.13505, arXiv.org, revised Mar 2022.
    2. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    3. Aur'elien Alfonsi & Guillaume Szulda, 2024. "On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients," Papers 2402.19203, arXiv.org, revised Jul 2024.
    4. Alexandre Pannier & Antoine Jacquier, 2019. "On the uniqueness of solutions of stochastic Volterra equations," Papers 1912.05917, arXiv.org, revised Apr 2020.
    5. Herv'e Andr`es & Benjamin Jourdain, 2024. "Existence, uniqueness and positivity of solutions to the Guyon-Lekeufack path-dependent volatility model with general kernels," Papers 2408.02477, arXiv.org.
    6. Henrique Guerreiro & Jo~ao Guerra, 2022. "VIX pricing in the rBergomi model under a regime switching change of measure," Papers 2201.10391, arXiv.org.
    7. Aur'elien Alfonsi, 2023. "Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation," Papers 2302.07758, arXiv.org, revised Oct 2024.
    8. Farkhondeh Rouz, O. & Shahmorad, S. & Ahmadian, D., 2024. "Double weakly singular kernels in stochastic Volterra integral equations with application to the rough Heston model," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    9. Deya, Aurélien & Tindel, Samy, 2011. "Rough Volterra equations 2: Convolutional generalized integrals," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1864-1899, August.
    10. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    11. David Nualart & Bhargobjyoti Saikia, 2023. "Error distribution of the Euler approximation scheme for stochastic Volterra equations," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1829-1876, September.
    12. Richard, Alexandre & Tan, Xiaolu & Yang, Fan, 2021. "Discrete-time simulation of Stochastic Volterra equations," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 109-138.
    13. Jie, Lijuan & Luo, Liangqing & Zhang, Hua, 2024. "One-dimensional McKean–Vlasov stochastic Volterra equations with Hölder diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 205(C).
    14. Carsten Chong, 2017. "Lévy-driven Volterra Equations in Space and Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1014-1058, September.
    15. Prömel, David J. & Scheffels, David, 2023. "Stochastic Volterra equations with Hölder diffusion coefficients," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 291-315.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harang, Fabian A. & Tindel, Samy, 2021. "Volterra equations driven by rough signals," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 34-78.
    2. Jie, Lijuan & Luo, Liangqing & Zhang, Hua, 2024. "One-dimensional McKean–Vlasov stochastic Volterra equations with Hölder diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 205(C).
    3. Alexandre Pannier & Antoine Jacquier, 2019. "On the uniqueness of solutions of stochastic Volterra equations," Papers 1912.05917, arXiv.org, revised Apr 2020.
    4. Aur'elien Alfonsi & Guillaume Szulda, 2024. "On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients," Papers 2402.19203, arXiv.org, revised Jul 2024.
    5. David J. Promel & David Scheffels, 2022. "Pathwise uniqueness for singular stochastic Volterra equations with H\"older coefficients," Papers 2212.08029, arXiv.org, revised Jul 2024.
    6. Carsten Chong, 2017. "Lévy-driven Volterra Equations in Space and Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1014-1058, September.
    7. Herv'e Andr`es & Benjamin Jourdain, 2024. "Existence, uniqueness and positivity of solutions to the Guyon-Lekeufack path-dependent volatility model with general kernels," Papers 2408.02477, arXiv.org.
    8. Deya, Aurélien & Tindel, Samy, 2011. "Rough Volterra equations 2: Convolutional generalized integrals," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1864-1899, August.
    9. Prömel, David J. & Scheffels, David, 2023. "Stochastic Volterra equations with Hölder diffusion coefficients," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 291-315.
    10. Aur'elien Alfonsi & Ahmed Kebaier, 2021. "Approximation of Stochastic Volterra Equations with kernels of completely monotone type," Papers 2102.13505, arXiv.org, revised Mar 2022.
    11. David Nualart & Bhargobjyoti Saikia, 2023. "Error distribution of the Euler approximation scheme for stochastic Volterra equations," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1829-1876, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:9:p:1062-1071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.