IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.08755.html
   My bibliography  Save this paper

LLM-driven Imitation of Subrational Behavior : Illusion or Reality?

Author

Listed:
  • Andrea Coletta
  • Kshama Dwarakanath
  • Penghang Liu
  • Svitlana Vyetrenko
  • Tucker Balch

Abstract

Modeling subrational agents, such as humans or economic households, is inherently challenging due to the difficulty in calibrating reinforcement learning models or collecting data that involves human subjects. Existing work highlights the ability of Large Language Models (LLMs) to address complex reasoning tasks and mimic human communication, while simulation using LLMs as agents shows emergent social behaviors, potentially improving our comprehension of human conduct. In this paper, we propose to investigate the use of LLMs to generate synthetic human demonstrations, which are then used to learn subrational agent policies though Imitation Learning. We make an assumption that LLMs can be used as implicit computational models of humans, and propose a framework to use synthetic demonstrations derived from LLMs to model subrational behaviors that are characteristic of humans (e.g., myopic behavior or preference for risk aversion). We experimentally evaluate the ability of our framework to model sub-rationality through four simple scenarios, including the well-researched ultimatum game and marshmallow experiment. To gain confidence in our framework, we are able to replicate well-established findings from prior human studies associated with the above scenarios. We conclude by discussing the potential benefits, challenges and limitations of our framework.

Suggested Citation

  • Andrea Coletta & Kshama Dwarakanath & Penghang Liu & Svitlana Vyetrenko & Tucker Balch, 2024. "LLM-driven Imitation of Subrational Behavior : Illusion or Reality?," Papers 2402.08755, arXiv.org.
  • Handle: RePEc:arx:papers:2402.08755
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.08755
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    2. Matthew Rabin & Ted O'Donoghue, 1999. "Doing It Now or Later," American Economic Review, American Economic Association, vol. 89(1), pages 103-124, March.
    3. Richard H. Thaler & Amos Tversky & Daniel Kahneman & Alan Schwartz, 1997. "The Effect of Myopia and Loss Aversion on Risk Taking: An Experimental Test," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 112(2), pages 647-661.
    4. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 73-92.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Shane Frederick & George Loewenstein & Ted O'Donoghue, 2002. "Time Discounting and Time Preference: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 351-401, June.
    8. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
    9. Tali Sharot & Alison M. Riccardi & Candace M. Raio & Elizabeth A. Phelps, 2007. "Neural mechanisms mediating optimism bias," Nature, Nature, vol. 450(7166), pages 102-105, November.
    10. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
    11. George-Marios Angeletos & David Laibson & Andrea Repetto & Jeremy Tobacman & Stephen Weinberg, 2001. "The Hyberbolic Consumption Model: Calibration, Simulation, and Empirical Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 15(3), pages 47-68, Summer.
    12. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    13. George A. Akerlof & Robert J. Shiller, 2010. "Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism," Economics Books, Princeton University Press, edition 1, number 9163.
    14. Nicholas C. Barberis, 2013. "Thirty Years of Prospect Theory in Economics: A Review and Assessment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 173-196, Winter.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduard Marinov, 2017. "The 2017 Nobel Prize in Economics," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 117-159.
    2. Committee, Nobel Prize, 2017. "Richard H. Thaler: Integrating Economics with Psychology," Nobel Prize in Economics documents 2017-1, Nobel Prize Committee.
    3. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    4. Thomas Epper & Helga Fehr-Duda, 2012. "The missing link: unifying risk taking and time discounting," ECON - Working Papers 096, Department of Economics - University of Zurich, revised Oct 2018.
    5. Beshears, John & Kosowsky, Harry, 2020. "Nudging: Progress to date and future directions," Organizational Behavior and Human Decision Processes, Elsevier, vol. 161(S), pages 3-19.
    6. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    7. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    8. Olivier Toubia & Eric Johnson & Theodoros Evgeniou & Philippe Delquié, 2013. "Dynamic Experiments for Estimating Preferences: An Adaptive Method of Eliciting Time and Risk Parameters," Management Science, INFORMS, vol. 59(3), pages 613-640, June.
    9. Ryota Nakamura & Marc Suhrcke & Daniel John Zizzo, 2017. "A triple test for behavioral economics models and public health policy," Theory and Decision, Springer, vol. 83(4), pages 513-533, December.
    10. Stefano DellaVigna & Devin Pope, 2018. "What Motivates Effort? Evidence and Expert Forecasts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 1029-1069.
    11. Teck H. Ho & Noah Lim & Colin Camerer, 2005. "Modeling the Psychology of Consumer and Firm Behavior with Behavioral Economics," Levine's Bibliography 784828000000000476, UCLA Department of Economics.
    12. Cristini, Annalisa & Origo, Federica & Pinoli, Sara, 2017. "The healthy fright of losing a good one for a bad one," Journal of Economic Psychology, Elsevier, vol. 59(C), pages 129-144.
    13. Brice Corgnet & Roberto Hernán González, 2023. "On The Appeal Of Complexity," Working Papers 2312, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    14. Lucy F. Ackert & Richard Deaves & Jennifer Miele & Quang Nguyen, 2020. "Are Time Preference and Risk Preference Associated with Cognitive Intelligence and Emotional Intelligence?," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 21(2), pages 136-156, April.
    15. Xie, Yuxin & Hwang, Soosung & Pantelous, Athanasios A., 2018. "Loss aversion around the world: Empirical evidence from pension funds," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 52-62.
    16. Rawley Heimer & Zwetelina Iliewa & Alex Imax & Martin Weber, 2021. "Dynamic Inconsistency in Risky Choice: Evidence from the Lab and Field," ECONtribute Discussion Papers Series 094, University of Bonn and University of Cologne, Germany.
    17. Andreas Richter & Jochen Ruß & Stefan Schelling, 2019. "Insurance customer behavior: Lessons from behavioral economics," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 22(2), pages 183-205, July.
    18. Tomomi Tanaka & Colin F Camerer & Quang Nguyen, 2006. "Poverty, politics, and preferences: Field Experiments and survey data from Vietnam," Levine's Bibliography 122247000000001099, UCLA Department of Economics.
    19. Dimmock, Stephen G. & Kouwenberg, Roy, 2010. "Loss-aversion and household portfolio choice," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 441-459, June.
    20. Clayton Arlen Looney & Andrew M. Hardin, 2009. "Decision Support for Retirement Portfolio Management: Overcoming Myopic Loss Aversion via Technology Design," Management Science, INFORMS, vol. 55(10), pages 1688-1703, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.08755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.