IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i11p1831-1849.html
   My bibliography  Save this article

Statistical arbitrage with vine copulas

Author

Listed:
  • Johannes Stübinger
  • Benedikt Mangold
  • Christopher Krauss

Abstract

We develop a multivariate statistical arbitrage strategy based on vine copulas—a highly flexible instrument for linear and nonlinear multivariate dependence modeling. In an empirical application on the S&P 500, we find statistically and economically significant returns of 9.25% p.a. and a Sharpe ratio of 1.12 after transaction costs for the period from 1992 until 2015. Tail risk is limited, with maximum drawdown at 6.57%. The high returns can only partially be explained by common sources of systematic risk. We benchmark the vine copula strategy against other variants relying on the multivariate Gaussian and t-distribution and we find its results to be superior in terms of risk and return characteristics. The multivariate dependence structure of the vine copulas is time-varying, and we see that the share of copulas capable of modelling upper and lower tail dependences increases well over 90% at times of high market turmoil.

Suggested Citation

  • Johannes Stübinger & Benedikt Mangold & Christopher Krauss, 2018. "Statistical arbitrage with vine copulas," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1831-1849, November.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:11:p:1831-1849
    DOI: 10.1080/14697688.2018.1438642
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1438642
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1438642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohd Sabri Ismail & Nurulkamal Masseran & Mohd Almie Alias & Sakhinah Abu Bakar, 2024. "Modeling Asymmetric Dependence Structure of Air Pollution Characteristics: A Vine Copula Approach," Mathematics, MDPI, vol. 12(4), pages 1-23, February.
    2. Muhammad Asif Khan & Masood Ahmed & József Popp & Judit Oláh, 2020. "US Policy Uncertainty and Stock Market Nexus Revisited through Dynamic ARDL Simulation and Threshold Modelling," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    3. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    4. Trent Spears & Stefan Zohren & Stephen Roberts, 2023. "On statistical arbitrage under a conditional factor model of equity returns," Papers 2309.02205, arXiv.org.
    5. Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2023. "Statistical arbitrage: factor investing approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1295-1331, December.
    6. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
    7. Johannes Stübinger & Lucas Schneider, 2019. "Statistical Arbitrage with Mean-Reverting Overnight Price Gaps on High-Frequency Data of the S&P 500," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    8. Garg, Jyoti & Karmakar, Madhusudan & Paul, Samit, 2023. "A study on equity home bias using vine copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    9. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Lucas Schneider & Johannes Stübinger, 2020. "Dispersion Trading Based on the Explanatory Power of S&P 500 Stock Returns," Mathematics, MDPI, vol. 8(9), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:11:p:1831-1849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.