IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.00788.html
   My bibliography  Save this paper

EU-28's progress towards the 2020 renewable energy share. A club convergence analysis

Author

Listed:
  • Mar'ia Jos'e Presno
  • Manuel Landajo

Abstract

This paper assesses the convergence of the EU-28 countries towards their common goal of 20% in the renewable energy share indicator by year 2020. The potential presence of clubs of convergence towards different steady state equilibria is also analyzed from both the standpoints of global convergence to the 20% goal and specific convergence to the various targets assigned to Member States. Two clubs of convergence are detected in the former case, each corresponding to different RES targets. A probit model is also fitted with the aim of better understanding the determinants of club membership, that seemingly include real GDP per capita, expenditure on environmental protection, energy dependence, and nuclear capacity, with all of them having statistically significant effects. Finally, convergence is also analyzed separately for the transport, heating and cooling, and electricity sectors.

Suggested Citation

  • Mar'ia Jos'e Presno & Manuel Landajo, 2024. "EU-28's progress towards the 2020 renewable energy share. A club convergence analysis," Papers 2402.00788, arXiv.org.
  • Handle: RePEc:arx:papers:2402.00788
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.00788
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Donggyu Sul, 2009. "Economic transition and growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1153-1185, November.
    2. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    3. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    4. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    5. Burnett, J. Wesley, 2016. "Club convergence and clustering of U.S. energy-related CO2 emissions," Resource and Energy Economics, Elsevier, vol. 46(C), pages 62-84.
    6. Burke, Paul J., 2010. "Income, resources, and electricity mix," Energy Economics, Elsevier, vol. 32(3), pages 616-626, May.
    7. Camarero, Mariam & Picazo-Tadeo, Andrés J. & Tamarit, Cecilio, 2013. "Are the determinants of CO2 emissions converging among OECD countries?," Economics Letters, Elsevier, vol. 118(1), pages 159-162.
    8. Adrienne M. Ohler, 2015. "Factors affecting the rise of renewable energy in the U.S.: Concern over environmental quality or rising unemployment?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Mark Strazicich & John List, 2003. "Are CO 2 Emission Levels Converging Among Industrial Countries?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(3), pages 263-271, March.
    10. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    11. Nicholas Apergis & James E. Payne, 2014. "The causal dynamics between renewable energy, real GDP, emissions and oil prices: evidence from OECD countries," Applied Economics, Taylor & Francis Journals, vol. 46(36), pages 4519-4525, December.
    12. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    13. Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Club Convergence in Carbon Dioxide Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(1), pages 47-70, September.
    14. Sadorsky, Perry, 2009. "Renewable energy consumption and income in emerging economies," Energy Policy, Elsevier, vol. 37(10), pages 4021-4028, October.
    15. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    16. John List, 1999. "Have Air Pollutant Emissions Converged Amongst U.S. Regions?," Natural Field Experiments 00528, The Field Experiments Website.
    17. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Convergence of energy productivity in Australian states and territories: Determinants and forecasts," Energy Economics, Elsevier, vol. 85(C).
    18. Presno, María José & Landajo, Manuel & Fernández González, Paula, 2018. "Stochastic convergence in per capita CO2 emissions. An approach from nonlinear stationarity analysis," Energy Economics, Elsevier, vol. 70(C), pages 563-581.
    19. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    20. John A. List, 1999. "Have Air Pollutant Emissions Converged Among U.S. Regions? Evidence from Unit Root Tests," Southern Economic Journal, John Wiley & Sons, vol. 66(1), pages 144-155, July.
    21. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    22. Gina Ionela Butnaru & Alina-Petronela Haller & Raluca Irina Clipa & Mirela Ștefănică & Mihaela Ifrim, 2020. "The Nexus Between Convergence of Conventional and Renewable Energy Consumption in the Present European Union States. Explorative Study on Parametric and Semi-Parametric Methods," Energies, MDPI, vol. 13(20), pages 1-19, October.
    23. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    24. Marques, António Cardoso & Fuinhas, José Alberto, 2012. "Are public policies towards renewables successful? Evidence from European countries," Renewable Energy, Elsevier, vol. 44(C), pages 109-118.
    25. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    26. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    27. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    28. Wang, Yiming & Zhang, Pei & Huang, Dake & Cai, Changda, 2014. "Convergence behavior of carbon dioxide emissions in China," Economic Modelling, Elsevier, vol. 43(C), pages 75-80.
    29. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    30. Ivanovski, Kris & Awaworyi Churchill, Sefa, 2020. "Convergence and determinants of greenhouse gas emissions in Australia: A regional analysis," Energy Economics, Elsevier, vol. 92(C).
    31. Morales-Lage, Rafael & Bengochea-Morancho, Aurelia & Camarero, Mariam & Martínez-Zarzoso, Inmaculada, 2019. "Club convergence of sectoral CO2 emissions in the European Union," Energy Policy, Elsevier, vol. 135(C).
    32. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    33. Herrerias, M.J., 2013. "The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy," Energy Policy, Elsevier, vol. 61(C), pages 1140-1150.
    34. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2020. "Stochastic convergence in per capita CO2 emissions: Evidence from emerging economies, 1921–2014," Energy Economics, Elsevier, vol. 86(C).
    35. Kim, Jeayoon & Park, Kwangwoo, 2016. "Financial development and deployment of renewable energy technologies," Energy Economics, Elsevier, vol. 59(C), pages 238-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivanovski, Kris & Awaworyi Churchill, Sefa, 2020. "Convergence and determinants of greenhouse gas emissions in Australia: A regional analysis," Energy Economics, Elsevier, vol. 92(C).
    2. Rodríguez-Benavides, Domingo & Andrés-Rosales, Roldán & Álvarez-García, José & Bekun, Festus Víctor, 2024. "Convergence of clubs between per capita carbon dioxide emissions from fossil fuels and cement production," Energy Policy, Elsevier, vol. 186(C).
    3. Vaseem Akram & Badri Narayan Rath & Pradipta Kumar Sahoo, 2024. "Club convergence in per capita carbon dioxide emissions across Indian states," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19907-19934, August.
    4. Mar'ia Jos'e Presno & Manuel Landajo & Paula Fern'andez Gonz'alez, 2024. "GHG emissions in the EU-28. A multilevel club convergence study of the Emission Trading System and Effort Sharing Decision mechanisms," Papers 2402.01784, arXiv.org, revised Feb 2024.
    5. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    6. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    7. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    8. Firat Emir & Mehmet Balcilar & Muhammad Shahbaz, 2018. "Inequality in Carbon Intensity in EU-28: Analysis Based on Club Convergence," Working Papers 15-38, Eastern Mediterranean University, Department of Economics.
    9. Tiwari, Aviral & Nasir, Muhammad Ali & shahbaz, Muhammad & Raheem, Ibrahim, 2020. "Convergence and club convergence of CO2 emissions at state levels: A nonlinear analysis of the USA," MPRA Paper 105355, University Library of Munich, Germany.
    10. Cialani, Catia & Mortazavi, Reza, 2021. "Sectoral analysis of club convergence in EU countries’ CO2 emissions," Energy, Elsevier, vol. 235(C).
    11. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    12. Mahamat Hamit-Haggar, 2019. "Regional and sectoral level convergence of greenhouse gas emissions in Canada," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 8(3), pages 268-282, July.
    13. Mateusz Tomal, 2024. "A review of Phillips‐Sul approach‐based club convergence tests," Journal of Economic Surveys, Wiley Blackwell, vol. 38(3), pages 899-930, July.
    14. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    15. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
    16. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    17. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    18. UÄŸur UrsavaÅŸ & Veli Yilanci, 2023. "Convergence analysis of ecological footprint at different time scales: Evidence from Southern Common Market countries," Energy & Environment, , vol. 34(2), pages 429-442, March.
    19. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    20. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.00788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.