IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.00618.html
   My bibliography  Save this paper

Changes-in-Changes for Ordered Choice Models: Too Many "False Zeros"?

Author

Listed:
  • Daniel Gutknecht
  • Cenchen Liu

Abstract

In this paper, we develop a Difference-in-Differences model for discrete, ordered outcomes, building upon elements from a continuous Changes-in-Changes model. We focus on outcomes derived from self-reported survey data eliciting socially undesirable, illegal, or stigmatized behaviors like tax evasion or substance abuse, where too many "false zeros", or more broadly, underreporting are likely. We start by providing a characterization for parallel trends within a general threshold-crossing model. We then propose a partial and point identification framework for different distributional treatment effects when the outcome is subject to underreporting. Applying our methodology, we investigate the impact of recreational marijuana legalization for adults in several U.S. states on the short-term consumption behavior of 8th-grade high-school students. The results indicate small, but significant increases in consumption probabilities at each level. These effects are further amplified upon accounting for misreporting.

Suggested Citation

  • Daniel Gutknecht & Cenchen Liu, 2023. "Changes-in-Changes for Ordered Choice Models: Too Many "False Zeros"?," Papers 2401.00618, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2401.00618
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.00618
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roger W. Klein & Robert P. Sherman, 2002. "Shift Restrictions and Semiparametric Estimation in Ordered Response Models," Econometrica, Econometric Society, vol. 70(2), pages 663-691, March.
    2. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    2. Stefan Boes, 2013. "Nonparametric analysis of treatment effects in ordered response models," Empirical Economics, Springer, vol. 44(1), pages 81-109, February.
    3. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear-Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 396-424, June.
    4. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    5. Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2023. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 385-410, Emerald Group Publishing Limited.
    6. Chin-Tsang Chiang & Shr-Yan Huang, 2009. "Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution," Biometrics, The International Biometric Society, vol. 65(1), pages 152-158, March.
    7. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017. "Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
    8. Yiwei Fan & Jiaqi Gu & Guosheng Yin, 2023. "Sparse concordanceā€based ordinal classification," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 934-961, September.
    9. Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
    10. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    11. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    12. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    13. Bellemare, C. & Melenberg, B. & van Soest, A.H.O., 2002. "Semi-parametric Models for Satisfaction with Income," Discussion Paper 2002-87, Tilburg University, Center for Economic Research.
    14. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    15. Christoph Breunig & Stephan Martin, 2020. "Nonclassical Measurement Error in the Outcome Variable," Papers 2009.12665, arXiv.org, revised May 2021.
    16. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    17. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    18. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    19. Subbotin, Viktor, 2007. "Asymptotic and bootstrap properties of rank regressions," MPRA Paper 9030, University Library of Munich, Germany, revised 20 Mar 2008.
    20. Zhouping Li & Jinfeng Xu & Wang Zhou, 2016. "On Nonsmooth Estimating Functions via Jackknife Empirical Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 49-69, March.
    21. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.00618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.