Algorithmic Persuasion Through Simulation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
- Grossman, S J & Hart, O D, 1980.
"Disclosure Laws and Takeover Bids,"
Journal of Finance, American Finance Association, vol. 35(2), pages 323-334, May.
- Sanford Grossman & Oliver Hart, "undated". "Disclosure Laws and Takeover Bids," Rodney L. White Center for Financial Research Working Papers 23-79, Wharton School Rodney L. White Center for Financial Research.
- John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
- Ju Hu & Xi Weng, 2021. "Robust persuasion of a privately informed receiver," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(3), pages 909-953, October.
- Piotr Dworczak & Alessandro Pavan, 2022.
"Preparing for the Worst but Hoping for the Best: Robust (Bayesian) Persuasion,"
Econometrica, Econometric Society, vol. 90(5), pages 2017-2051, September.
- Pavan, Alessandro & Dworczak, Piotr, 2020. "Preparing for the Worst But Hoping for the Best: Robust (Bayesian) Persuasion," CEPR Discussion Papers 15017, C.E.P.R. Discussion Papers.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kevin Leyton-Brown & Paul Milgrom & Neil Newman & Ilya Segal, 2023. "Artificial Intelligence and Market Design: Lessons Learned from Radio Spectrum Reallocation," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
- Kirshner, Samuel N., 2024. "GPT and CLT: The impact of ChatGPT's level of abstraction on consumer recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
- Zengqing Wu & Run Peng & Xu Han & Shuyuan Zheng & Yixin Zhang & Chuan Xiao, 2023. "Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations," Papers 2311.06330, arXiv.org, revised Dec 2023.
- Joshua C. Yang & Damian Dailisan & Marcin Korecki & Carina I. Hausladen & Dirk Helbing, 2024. "LLM Voting: Human Choices and AI Collective Decision Making," Papers 2402.01766, arXiv.org, revised Aug 2024.
- Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
- Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
- Ali Goli & Amandeep Singh, 2023. "Exploring the Influence of Language on Time-Reward Perceptions in Large Language Models: A Study Using GPT-3.5," Papers 2305.02531, arXiv.org, revised Jun 2023.
- Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
- Christoph Engel & Max R. P. Grossmann & Axel Ockenfels, 2023.
"Integrating machine behavior into human subject experiments: A user-friendly toolkit and illustrations,"
Discussion Paper Series of the Max Planck Institute for Research on Collective Goods
2024_01, Max Planck Institute for Research on Collective Goods.
- Christoph Engel & Max R. P. Grossmann & Axel Ockenfels, 2024. "Integrating Machine Behavior into Human Subject Experiments: A User-Friendly Toolkit and Illustrations," ECONtribute Discussion Papers Series 302, University of Bonn and University of Cologne, Germany.
- Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023.
"The emergence of economic rationality of GPT,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
- Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The Emergence of Economic Rationality of GPT," Papers 2305.12763, arXiv.org, revised Nov 2023.
- Jiafu An & Difang Huang & Chen Lin & Mingzhu Tai, 2024. "Measuring Gender and Racial Biases in Large Language Models," Papers 2403.15281, arXiv.org.
- Fulin Guo, 2023. "GPT in Game Theory Experiments," Papers 2305.05516, arXiv.org, revised Dec 2023.
- Takashi Ui, 2022. "Optimal and Robust Disclosure of Public Information," Papers 2203.16809, arXiv.org, revised Apr 2022.
- Jingru Jia & Zehua Yuan & Junhao Pan & Paul E. McNamara & Deming Chen, 2024. "Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context," Papers 2406.05972, arXiv.org, revised Oct 2024.
- Fabio Motoki & Valdemar Pinho Neto & Victor Rodrigues, 2024. "More human than human: measuring ChatGPT political bias," Public Choice, Springer, vol. 198(1), pages 3-23, January.
- George Gui & Olivier Toubia, 2023. "The Challenge of Using LLMs to Simulate Human Behavior: A Causal Inference Perspective," Papers 2312.15524, arXiv.org.
- Felix Chopra & Ingar Haaland, 2023.
"Conducting qualitative interviews with AI,"
CEBI working paper series
23-06, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
- Felix Chopra & Ingar Haaland & Ingar K. Haaland, 2023. "Conducting Qualitative Interviews with AI," CESifo Working Paper Series 10666, CESifo.
- Siting Estee Lu, 2024. "Strategic Interactions between Large Language Models-based Agents in Beauty Contests," Papers 2404.08492, arXiv.org, revised Oct 2024.
- Shumiao Ouyang & Hayong Yun & Xingjian Zheng, 2024. "How Ethical Should AI Be? How AI Alignment Shapes the Risk Preferences of LLMs," Papers 2406.01168, arXiv.org, revised Aug 2024.
- Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-AIN-2024-01-08 (Artificial Intelligence)
- NEP-BIG-2024-01-08 (Big Data)
- NEP-CMP-2024-01-08 (Computational Economics)
- NEP-GTH-2024-01-08 (Game Theory)
- NEP-MIC-2024-01-08 (Microeconomics)
- NEP-UPT-2024-01-08 (Utility Models and Prospect Theory)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.18138. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.