IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.14207.html
   My bibliography  Save this paper

Understanding intra-day price formation process by agent-based financial market simulation: calibrating the extended chiarella model

Author

Listed:
  • Kang Gao
  • Perukrishnen Vytelingum
  • Stephen Weston
  • Wayne Luk
  • Ce Guo

Abstract

This article presents XGB-Chiarella, a powerful new approach for deploying agent-based models to generate realistic intra-day artificial financial price data. This approach is based on agent-based models, calibrated by XGBoost machine learning surrogate. Following the Extended Chiarella model, three types of trading agents are introduced in this agent-based model: fundamental traders, momentum traders, and noise traders. In particular, XGB-Chiarella focuses on configuring the simulation to accurately reflect real market behaviours. Instead of using the original Expectation-Maximisation algorithm for parameter estimation, the agent-based Extended Chiarella model is calibrated using XGBoost machine learning surrogate. It is shown that the machine learning surrogate learned in the proposed method is an accurate proxy of the true agent-based market simulation. The proposed calibration method is superior to the original Expectation-Maximisation parameter estimation in terms of the distance between historical and simulated stylised facts. With the same underlying model, the proposed methodology is capable of generating realistic price time series in various stocks listed at three different exchanges, which indicates the universality of intra-day price formation process. For the time scale (minutes) chosen in this paper, one agent per category is shown to be sufficient to capture the intra-day price formation process. The proposed XGB-Chiarella approach provides insights that the price formation process is comprised of the interactions between momentum traders, fundamental traders, and noise traders. It can also be used to enhance risk management by practitioners.

Suggested Citation

  • Kang Gao & Perukrishnen Vytelingum & Stephen Weston & Wayne Luk & Ce Guo, 2022. "Understanding intra-day price formation process by agent-based financial market simulation: calibrating the extended chiarella model," Papers 2208.14207, arXiv.org.
  • Handle: RePEc:arx:papers:2208.14207
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.14207
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Majewski, Adam A. & Ciliberti, Stefano & Bouchaud, Jean-Philippe, 2020. "Co-existence of trend and value in financial markets: Estimating an extended Chiarella model," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    3. Cason, Timothy N. & Friedman, Daniel, 1996. "Price formation in double auction markets," Journal of Economic Dynamics and Control, Elsevier, vol. 20(8), pages 1307-1337, August.
    4. Gerety, Mason S & Mulherin, J Harold, 1994. "Price Formation on Stock Exchanges: The Evolution of Trading within the Day," The Review of Financial Studies, Society for Financial Studies, vol. 7(3), pages 609-629.
    5. G. Dosi & M. C. Pereira & M. E. Virgillito, 2018. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
    6. Carlo Bianchi & Pasquale Cirillo & Mauro Gallegati & Pietro Vagliasindi, 2007. "Validating and Calibrating Agent-Based Models: A Case Study," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 245-264, October.
    7. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    8. Marta Faias & Carlos Hervés-Beloso & Emma Moreno-García, 2011. "Equilibrium price formation in markets with differentially informed agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 205-218, September.
    9. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    10. Beja, Avraham & Goldman, M Barry, 1980. "On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    11. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    12. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    13. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    14. Jackson, Matthew O, 1991. "Equilibrium, Price Formation, and the Value of Private Information," The Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 1-16.
    15. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    16. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    17. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
    18. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    19. Zeeman, E. C., 1974. "On the unstable behaviour of stock exchanges," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 39-49, March.
    20. Frank McGroarty & Ash Booth & Enrico Gerding & V. L. Raju Chinthalapati, 2019. "High frequency trading strategies, market fragility and price spikes: an agent based model perspective," Annals of Operations Research, Springer, vol. 282(1), pages 217-244, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang Gao & Stephen Weston & Perukrishnen Vytelingum & Namid R. Stillman & Wayne Luk & Ce Guo, 2023. "Deeper Hedging: A New Agent-based Model for Effective Deep Hedging," Papers 2310.18755, arXiv.org.
    2. Colin M. Van Oort & Ethan Ratliff-Crain & Brian F. Tivnan & Safwan Wshah, 2023. "Adaptive Agents and Data Quality in Agent-Based Financial Markets," Papers 2311.15974, arXiv.org.
    3. Namid R. Stillman & Rory Baggott & Justin Lyon & Jianfei Zhang & Dingqiu Zhu & Tao Chen & Perukrishnen Vytelingum, 2023. "Deep Calibration of Market Simulations using Neural Density Estimators and Embedding Networks," Papers 2311.11913, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Nan Zhai, 2015. "Asset Pricing Under Ambiguity and Heterogeneity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2015, January-A.
    2. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    4. Majewski, Adam A. & Ciliberti, Stefano & Bouchaud, Jean-Philippe, 2020. "Co-existence of trend and value in financial markets: Estimating an extended Chiarella model," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    5. Noemi Schmitt & Ivonne Schwartz & Frank Westerhoff, 2022. "Heterogeneous speculators and stock market dynamics: a simple agent-based computational model," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1263-1282, October.
    6. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    7. Kang Gao & Perukrishnen Vytelingum & Stephen Weston & Wayne Luk & Ce Guo, 2022. "High-frequency financial market simulation and flash crash scenarios analysis: an agent-based modelling approach," Papers 2208.13654, arXiv.org.
    8. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    9. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    10. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    11. Adam Majewski & Stefano Ciliberti & Jean-Philippe Bouchaud, 2018. "Co-existence of Trend and Value in Financial Markets: Estimating an Extended Chiarella Model," Papers 1807.11751, arXiv.org.
    12. Lux, Thomas, 2020. "Can heterogeneous agent models explain the alleged mispricing of the S&P 500?," Economics Working Papers 2020-03, Christian-Albrechts-University of Kiel, Department of Economics.
    13. Qi Nan Zhai, 2015. "Asset Pricing Under Ambiguity and Heterogeneity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 16, July-Dece.
    14. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    15. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    16. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    17. Grosche, Stephanie & Heckelei, Thomas, 2014. "Price dynamics and financialization effects in corn futures markets with heterogeneous traders," Discussion Papers 172077, University of Bonn, Institute for Food and Resource Economics.
    18. Radu T. Pruna & Maria Polukarov & Nicholas R. Jennings, 2020. "Loss aversion in an agent-based asset pricing model," Quantitative Finance, Taylor & Francis Journals, vol. 20(2), pages 275-290, February.
    19. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    20. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.
    21. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.14207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.