IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.00832.html
   My bibliography  Save this paper

Estimation of VaR with jump process: application in corn and soybean markets

Author

Listed:
  • Minglian Lin
  • Indranil SenGupta
  • William Wilson

Abstract

Value at Risk (VaR) is a quantitative measure used to evaluate the risk linked to the potential loss of investment or capital. Estimation of the VaR entails the quantification of prospective losses in a portfolio of investments, using a certain likelihood, under normal market conditions within a specific time period. The objective of this paper is to construct a model and estimate the VaR for a diversified portfolio consisting of multiple cash commodity positions driven by standard Brownian motions and jump processes. Subsequently, a thorough analytical estimation of the VaR is conducted for the proposed model. The results are then applied to two distinct commodities -- corn and soybean -- enabling a comprehensive comparison of the VaR values in the presence and absence of jumps.

Suggested Citation

  • Minglian Lin & Indranil SenGupta & William Wilson, 2023. "Estimation of VaR with jump process: application in corn and soybean markets," Papers 2311.00832, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2311.00832
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.00832
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Humayra Shoshi & Erik Hanson & William Nganje & Indranil SenGupta, 2021. "Stochastic Analysis and Neural Network-Based Yield Prediction with Precision Agriculture," JRFM, MDPI, vol. 14(9), pages 1-17, August.
    2. Shige Peng & Shuzhen Yang & Jianfeng Yao, 2023. "Improving Value-at-Risk Prediction Under Model Uncertainty," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 228-259.
    3. Owusu Junior, Peterson & Tiwari, Aviral Kumar & Tweneboah, George & Asafo-Adjei, Emmanuel, 2022. "GAS and GARCH based value-at-risk modeling of precious metals," Resources Policy, Elsevier, vol. 75(C).
    4. Killick, Rebecca & Eckley, Idris A., 2014. "changepoint: An R Package for Changepoint Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i03).
    5. Minglian Lin & Indranil SenGupta, 2021. "Analysis of optimal portfolio on finite and small time horizons for a stochastic volatility market model," Papers 2104.06293, arXiv.org.
    6. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    7. Fahim Afzal & Pan Haiying & Farman Afzal & Asif Mahmood & Amir Ikram, 2021. "Value-at-Risk Analysis for Measuring Stochastic Volatility of Stock Returns: Using GARCH-Based Dynamic Conditional Correlation Model," SAGE Open, , vol. 11(1), pages 21582440211, March.
    8. Kamrud, Gwen & Wilson, William W. & Bullock, David W., 2023. "Logistics competition between the U.S. and Brazil for soybean shipments to China: An optimized Monte Carlo simulation approach," Journal of Commodity Markets, Elsevier, vol. 31(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    2. Hasna Fadhila & Nora Amelda Rizal, 2013. "Analysis of Risk using Value at Risk (VaR) After Crisis in 2008 Study in Stocks of Bank Mandiri, Bank BRI and Bank BNI in 2009-2011," Information Management and Business Review, AMH International, vol. 5(8), pages 394-400.
    3. Petter Arnesen & Odd A. Hjelkrem, 2018. "An Estimator for Traffic Breakdown Probability Based on Classification of Transitional Breakdown Events," Transportation Science, INFORMS, vol. 52(3), pages 593-602, June.
    4. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    5. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    6. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
    7. Malte Willmes & Katherine M Ransom & Levi S Lewis & Christian T Denney & Justin J G Glessner & James A Hobbs, 2018. "IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
    8. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    9. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    10. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    11. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
    12. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    13. Ravi Kashyap, 2024. "The Concentration Risk Indicator: Raising the Bar for Financial Stability and Portfolio Performance Measurement," Papers 2408.07271, arXiv.org.
    14. Pinto, Cristian F. & Acuña, Andres A., 2011. "Consistencia de la evaluación de desempeño de inversiones financieras: Pruebas de dominación estocástica versus índices media-varianza [Consistency in the evaluation of financial investment perform," MPRA Paper 31301, University Library of Munich, Germany.
    15. Tasadduq Imam, 2021. "Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1808-1824, April.
    16. Rehman, Mobeen Ur & Owusu Junior, Peterson & Ahmad, Nasir & Vo, Xuan Vinh, 2022. "Time-varying risk analysis for commodity futures," Resources Policy, Elsevier, vol. 78(C).
    17. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    18. Raputsoane, Leroi, 2018. "Temporal homogeneity between financial stress and the economic cycle," MPRA Paper 91119, University Library of Munich, Germany.
    19. Isengildina-Massa, Olga & Sharp, Julia L., 2013. "Interval Forecast Comparison," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150791, Agricultural and Applied Economics Association.
    20. Hui Zhang & Minna Väliranta & Graeme T. Swindles & Marco A. Aquino-López & Donal Mullan & Ning Tan & Matthew Amesbury & Kirill V. Babeshko & Kunshan Bao & Anatoly Bobrov & Viktor Chernyshov & Marissa , 2022. "Recent climate change has driven divergent hydrological shifts in high-latitude peatlands," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.00832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.