IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.10220.html
   My bibliography  Save this paper

Comparing effects of price limit and circuit breaker in stock exchanges by an agent-based model

Author

Listed:
  • Takanobu Mizuta
  • Isao Yagi

Abstract

The prevention of rapidly and steeply falling market prices is vital to avoid financial crisis. To this end, some stock exchanges implement a price limit or a circuit breaker, and there has been intensive investigation into which regulation best prevents rapid and large variations in price. In this study, we examine this question using an artificial market model that is an agent-based model for a financial market. Our findings show that the price limit and the circuit breaker basically have the same effect when the parameters, limit price range and limit time range, are the same. However, the price limit is less effective when limit the time range is smaller than the cancel time range. With the price limit, many sell orders are accumulated around the lower limit price, and when the lower limit price is changed before the accumulated sell orders are cancelled, it leads to the accumulation of sell orders of various prices. These accumulated sell orders essentially act as a wall against buy orders, thereby preventing price from rising. Caution should be taken in the sense that these results pertain to a limited situation. Specifically, our finding that the circuit breaker is better than the price limit should be adapted only in cases where the reason for falling prices is erroneous orders and when individual stocks are regulated.

Suggested Citation

  • Takanobu Mizuta & Isao Yagi, 2023. "Comparing effects of price limit and circuit breaker in stock exchanges by an agent-based model," Papers 2309.10220, arXiv.org.
  • Handle: RePEc:arx:papers:2309.10220
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.10220
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Yong H. & Yagüe, José & Yang, J. Jimmy, 2008. "Relative performance of trading halts and price limits: Evidence from the Spanish Stock Exchange," International Review of Economics & Finance, Elsevier, vol. 17(2), pages 197-215.
    2. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    3. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    4. Xiaotao Zhang & Jing Ping & Tao Zhu & Yuelei Li & Xiong Xiong, 2016. "Are Price Limits Effective? An Examination of an Artificial Stock Market," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-21, August.
    5. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    6. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    7. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    8. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    2. Pietro DeLellis & Anna DiMeglio & Franco Garofalo & Francesco Lo Iudice, 2017. "The evolving cobweb of relations among partially rational investors," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    3. Tilfani, Oussama & Kristoufek, Ladislav & Ferreira, Paulo & El Boukfaoui, My Youssef, 2022. "Heterogeneity in economic relationships: Scale dependence through the multivariate fractal regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    4. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    5. Iori, G. & Porter, J., 2012. "Agent-Based Modelling for Financial Markets," Working Papers 12/08, Department of Economics, City University London.
    6. Robin Nicole & Peter Sollich, 2017. "Dynamical selection of Nash equilibria using Experience Weighted Attraction Learning: emergence of heterogeneous mixed equilibria," Papers 1706.09763, arXiv.org.
    7. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.
    8. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    9. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    10. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    11. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    12. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2020. "A path integral approach to business cycle models with large number of agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 899-942, October.
    13. Dias, Thiago & Gonçalves, Sebastián, 2024. "Effectiveness of wealth-based vs exchange-based tax systems in reducing inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    14. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.
    15. Stein, Julian Alexander Cornelius & Braun, Dieter, 2019. "Stability of a time-homogeneous system of money and antimoney in an agent-based random economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 232-249.
    16. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    17. Xinyue Dong & Honggang Li, 2019. "The Effect of Extremely Small Price Limits: Evidence from the Early Period of the Chinese Stock Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(7), pages 1516-1530, May.
    18. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    19. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    20. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    21. Vygintas Gontis & Aleksejus Kononovicius, 2014. "Consentaneous Agent-Based and Stochastic Model of the Financial Markets," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.10220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.