IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0102201.html
   My bibliography  Save this article

Consentaneous Agent-Based and Stochastic Model of the Financial Markets

Author

Listed:
  • Vygintas Gontis
  • Aleksejus Kononovicius

Abstract

We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation.

Suggested Citation

  • Vygintas Gontis & Aleksejus Kononovicius, 2014. "Consentaneous Agent-Based and Stochastic Model of the Financial Markets," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
  • Handle: RePEc:plo:pone00:0102201
    DOI: 10.1371/journal.pone.0102201
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102201
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0102201&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0102201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    3. George A. Akerlof, 2009. "How Human Psychology Drives the Economy and Why It Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(5), pages 1175-1175.
    4. Lisa Borland, 2002. "Option Pricing Formulas based on a non-Gaussian Stock Price Model," Papers cond-mat/0204331, arXiv.org, revised Sep 2002.
    5. Vandewalle, N. & Ausloos, M., 1997. "Coherent and random sequences in financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 454-459.
    6. Vygintas Gontis & Aleksejus Kononovicius & Stefan Reimann, 2012. "The Class Of Nonlinear Stochastic Models As A Background For The Bursty Behavior In Financial Markets," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(supp0), pages 1-13.
    7. Bertrand M. Roehner, 2010. "Fifteen years of econophysics: worries, hopes and prospects," Papers 1004.3229, arXiv.org.
    8. Scalas, Enrico & Garibaldi, Ubaldo, 2009. "A Dynamic Probabilistic Version of the Aoki-Yoshikawa Sectoral Productivity Model," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-10.
    9. Robert J. Shiller, 2012. "Finance and the Good Society," Economics Books, Princeton University Press, edition 1, number 9652.
    10. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    11. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    12. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    15. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    16. Aleksejus Kononovicius & Vygintas Gontis & Valentas Daniunas, 2012. "Agent-based Versus Macroscopic Modeling of Competition and Business Processes in Economics and Finance," Papers 1202.3533, arXiv.org, revised Jun 2012.
    17. Kononovicius, A. & Gontis, V., 2014. "Control of the socio-economic systems using herding interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 80-84.
    18. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    19. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    20. Aleksejus Kononovicius & Vygintas Gontis, 2012. "Three-state herding model of the financial markets," Papers 1210.1838, arXiv.org, revised Jan 2013.
    21. Jean-Philippe Bouchaud, 2008. "Economics need a scientific revolution," Papers 0810.5306, arXiv.org.
    22. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    23. Jean-Philippe Bouchaud, 2008. "Economics needs a scientific revolution," Nature, Nature, vol. 455(7217), pages 1181-1181, October.
    24. Thilo A. Schmitt & Rudi Schafer & Michael C. Munnix & Thomas Guhr, 2012. "Microscopic understanding of heavy-tailed return distributions in an agent-based model," Papers 1207.2946, arXiv.org.
    25. Ribin Lye & James Peng Lung Tan & Siew Ann Cheong, 2012. "Understanding agent-based models of financial markets: a bottom-up approach based on order parameters and phase diagrams," Papers 1202.0606, arXiv.org.
    26. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    27. Kononovicius, A. & Gontis, V., 2012. "Agent based reasoning for the non-linear stochastic models of long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1309-1314.
    28. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    29. Lye, Ribin & Tan, James Peng Lung & Cheong, Siew Ann, 2012. "Understanding agent-based models of financial markets: A bottom–up approach based on order parameters and phase diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5521-5531.
    30. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    31. Gontis, V. & Ruseckas, J. & Kononovičius, A., 2010. "A long-range memory stochastic model of the return in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 100-106.
    32. Rafal Rak & Stanislaw Drozdz & Jaroslaw Kwapien & Pawel Oswiecimka, 2013. "Stock returns versus trading volume: is the correspondence more general?," Papers 1310.7018, arXiv.org.
    33. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    34. Vygintas Gontis & Aleksejus Kononovicius & Stefan Reimann, 2012. "The class of nonlinear stochastic models as a background for the bursty behavior in financial markets," Papers 1201.3083, arXiv.org, revised May 2012.
    35. Aleksejus Kononovicius & Vygintas Gontis, 2013. "Control of the socio-economic systems using herding interactions," Papers 1309.6105, arXiv.org, revised Feb 2014.
    36. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    2. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    3. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    4. Kononovicius, A. & Gontis, V., 2014. "Control of the socio-economic systems using herding interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 80-84.
    5. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    6. Gontis, V. & Havlin, S. & Kononovicius, A. & Podobnik, B. & Stanley, H.E., 2016. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1091-1102.
    7. Vygintas Gontis & Shlomo Havlin & Aleksejus Kononovicius & Boris Podobnik & H. Eugene Stanley, 2015. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Papers 1507.05203, arXiv.org, revised Oct 2016.
    8. Aleksejus Kononovicius & Julius Ruseckas, 2014. "Nonlinear GARCH model and 1/f noise," Papers 1412.6244, arXiv.org, revised Feb 2015.
    9. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    10. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    11. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    12. Kononovicius, A. & Ruseckas, J., 2015. "Nonlinear GARCH model and 1/f noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 74-81.
    13. Aleksejus Kononovicius & Julius Ruseckas, 2018. "Order book model with herd behavior exhibiting long-range memory," Papers 1809.02772, arXiv.org, revised Apr 2019.
    14. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    15. Aleksejus Kononovicius & Valentas Daniunas, 2013. "Agent-based and macroscopic modeling of the complex socio-economic systems," Papers 1303.3693, arXiv.org, revised Apr 2013.
    16. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    17. Albrecht Irle & Jonas Kauschke & Thomas Lux & Mishael Milaković, 2011. "Switching Rates And The Asymptotic Behavior Of Herding Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 359-376.
    18. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    19. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    20. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0102201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.