IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.12212.html
   My bibliography  Save this paper

Learning to Learn Financial Networks for Optimising Momentum Strategies

Author

Listed:
  • Xingyue Pu
  • Stefan Zohren
  • Stephen Roberts
  • Xiaowen Dong

Abstract

Network momentum provides a novel type of risk premium, which exploits the interconnections among assets in a financial network to predict future returns. However, the current process of constructing financial networks relies heavily on expensive databases and financial expertise, limiting accessibility for small-sized and academic institutions. Furthermore, the traditional approach treats network construction and portfolio optimisation as separate tasks, potentially hindering optimal portfolio performance. To address these challenges, we propose L2GMOM, an end-to-end machine learning framework that simultaneously learns financial networks and optimises trading signals for network momentum strategies. The model of L2GMOM is a neural network with a highly interpretable forward propagation architecture, which is derived from algorithm unrolling. The L2GMOM is flexible and can be trained with diverse loss functions for portfolio performance, e.g. the negative Sharpe ratio. Backtesting on 64 continuous future contracts demonstrates a significant improvement in portfolio profitability and risk control, with a Sharpe ratio of 1.74 across a 20-year period.

Suggested Citation

  • Xingyue Pu & Stefan Zohren & Stephen Roberts & Xiaowen Dong, 2023. "Learning to Learn Financial Networks for Optimising Momentum Strategies," Papers 2308.12212, arXiv.org.
  • Handle: RePEc:arx:papers:2308.12212
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.12212
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lior Menzly & Oguzhan Ozbas, 2010. "Market Segmentation and Cross‐predictability of Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1555-1580, August.
    2. Tom Liu & Stephen Roberts & Stefan Zohren, 2023. "Deep Inception Networks: A General End-to-End Framework for Multi-asset Quantitative Strategies," Papers 2307.05522, arXiv.org.
    3. Lee, Charles M.C. & Sun, Stephen Teng & Wang, Rongfei & Zhang, Ran, 2019. "Technological links and predictable returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 76-96.
    4. George M. Korniotis & Alok Kumar, 2013. "State-Level Business Cycles and Local Return Predictability," Journal of Finance, American Finance Association, vol. 68(3), pages 1037-1096, June.
    5. Tobias J. Moskowitz & Mark Grinblatt, 1999. "Do Industries Explain Momentum?," Journal of Finance, American Finance Association, vol. 54(4), pages 1249-1290, August.
    6. Wee Ling Tan & Stephen Roberts & Stefan Zohren, 2023. "Spatio-Temporal Momentum: Jointly Learning Time-Series and Cross-Sectional Strategies," Papers 2302.10175, arXiv.org.
    7. Christopher A Parsons & Riccardo Sabbatucci & Sheridan Titman, 2020. "Geographic Lead-Lag Effects," The Review of Financial Studies, Society for Financial Studies, vol. 33(10), pages 4721-4770.
    8. Kieran Wood & Sven Giegerich & Stephen Roberts & Stefan Zohren, 2021. "Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture," Papers 2112.08534, arXiv.org, revised Nov 2022.
    9. Lauren Cohen & Andrea Frazzini, 2008. "Economic Links and Predictable Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1977-2011, August.
    10. Ali, Usman & Hirshleifer, David, 2020. "Shared analyst coverage: Unifying momentum spillover effects," Journal of Financial Economics, Elsevier, vol. 136(3), pages 649-675.
    11. Boni, Leslie & Womack, Kent L., 2006. "Analysts, Industries, and Price Momentum," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(1), pages 85-109, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zilin & Chu, Liya & Liang, Dawei & Tu, Jun, 2022. "Far away from home: Investors’ underreaction to geographically dispersed information," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    2. Xingyue Pu & Stephen Roberts & Xiaowen Dong & Stefan Zohren, 2023. "Network Momentum across Asset Classes," Papers 2308.11294, arXiv.org.
    3. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    4. Yi, Biao & Guo, Shuxin, 2022. "Common analyst links and predictable returns: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    5. Li Guo & Wolfgang Karl Härdle & Yubo Tao, 2024. "A Time-Varying Network for Cryptocurrencies," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 437-456, April.
    6. Chang, Ran & Gonzalez, Angelica & Sarkissian, Sergei & Tu, Jun, 2022. "Internal capital markets and predictability in complex ownership firms," Journal of Corporate Finance, Elsevier, vol. 74(C).
    7. Huang, Shiyang & Lin, Tse-Chun & Xiang, Hong, 2021. "Psychological barrier and cross-firm return predictability," Journal of Financial Economics, Elsevier, vol. 142(1), pages 338-356.
    8. Yi, Biao & Xiang, Xueman, 2023. "Pair analyst coverage and return comovement: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    9. Jin, Zuben, 2024. "Business aspects in focus, investor underreaction and return predictability," Journal of Corporate Finance, Elsevier, vol. 84(C).
    10. Lee, Charles M.C. & Shi, Terrence Tianshuo & Sun, Stephen Teng & Zhang, Ran, 2024. "Production complementarity and information transmission across industries," Journal of Financial Economics, Elsevier, vol. 155(C).
    11. Dragos Gorduza & Yaxuan Kong & Xiaowen Dong & Stefan Zohren, 2024. "Extracting Alpha from Financial Analyst Networks," Papers 2410.20597, arXiv.org.
    12. Yao Wang & Jingmei Zhao & Qing Li & Xiangyu Wei, 2024. "Considering momentum spillover effects via graph neural network in option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1069-1094, June.
    13. Ying, Jie, 2024. "Gradual information diffusion across commonly owned firms," Journal of Financial Economics, Elsevier, vol. 156(C).
    14. Huang, Shiyang & Lee, Charles M.C. & Song, Yang & Xiang, Hong, 2022. "A frog in every pan: Information discreteness and the lead-lag returns puzzle," Journal of Financial Economics, Elsevier, vol. 145(2), pages 83-102.
    15. Cao, Zhengyu & Wang, Rundong & Xiao, Xinrong & Yin, Chengxi, 2023. "Disseminating information across connected firms — Analyst site visits can help," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 510-531.
    16. Lin, Mei-Chen, 2024. "Shared analyst coverage, 52-week high, and cross-firm return predictability," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    17. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    18. Zeng, Kailin & Tang, Ting & Liu, Fangbiao & Atta Mills, Ebenezer Fiifi Emire, 2022. "Innovation links, information diffusion, and return predictability: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 83(C).
    19. Ge, Shuyi & Li, Shaoran & Linton, Oliver, 2023. "News-implied linkages and local dependency in the equity market," Journal of Econometrics, Elsevier, vol. 235(2), pages 779-815.
    20. Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.12212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.