IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v83y2022ics1057521922001867.html
   My bibliography  Save this article

Innovation links, information diffusion, and return predictability: Evidence from China

Author

Listed:
  • Zeng, Kailin
  • Tang, Ting
  • Liu, Fangbiao
  • Atta Mills, Ebenezer Fiifi Emire

Abstract

Based on the activities of patent citation in China, a novel type of cross-firm innovation links is generated to investigate the gradual diffusion of information along the innovation chain via tests of cross-sectional return predictability. Various signals are created to represent the value of the information contained in the innovation links; these signals are demonstrated to have robust cross-predictability for stock returns in both the cross-sectional regression model and portfolio strategies. The effect of predictability is found to be stronger for stocks with high institutional ownership and analyst coverage. Considering the minimum number of steps required to establish the cross-firm linkage, innovation links are further partitioned to represent different proximity of the linked firms. It is then found that information diffuses faster across closely-linked firms than across distantly-linked firms. Sophisticated investors are found to be able to properly process the relevant information and benefit from innovation links.

Suggested Citation

  • Zeng, Kailin & Tang, Ting & Liu, Fangbiao & Atta Mills, Ebenezer Fiifi Emire, 2022. "Innovation links, information diffusion, and return predictability: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 83(C).
  • Handle: RePEc:eee:finana:v:83:y:2022:i:c:s1057521922001867
    DOI: 10.1016/j.irfa.2022.102225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521922001867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2022.102225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    2. Nicholas Bloom & Mark Schankerman & John Van Reenen, 2013. "Identifying Technology Spillovers and Product Market Rivalry," Econometrica, Econometric Society, vol. 81(4), pages 1347-1393, July.
    3. Schlag, Christian & Zeng, Kailin, 2019. "Horizontal industry relationships and return predictability," SAFE Working Paper Series 256, Leibniz Institute for Financial Research SAFE.
    4. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    5. Thompson, Samuel B., 2011. "Simple formulas for standard errors that cluster by both firm and time," Journal of Financial Economics, Elsevier, vol. 99(1), pages 1-10, January.
    6. Lee, Charles M.C. & Sun, Stephen Teng & Wang, Rongfei & Zhang, Ran, 2019. "Technological links and predictable returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 76-96.
    7. Lauren Cohen & Andrea Frazzini, 2008. "Economic Links and Predictable Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1977-2011, August.
    8. Schlag, Christian & Zeng, Kailin, 2019. "Horizontal industry relationships and return predictability," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 310-330.
    9. Lior Menzly & Oguzhan Ozbas, 2010. "Market Segmentation and Cross‐predictability of Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1555-1580, August.
    10. Badrinath, S G & Kale, Jayant R & Noe, Thomas H, 1995. "Of Shepherds, Sheep, and the Cross-autocorrelations in Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 401-430.
    11. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. Mikko Packalen & Jay Bhattacharya, 2012. "Words in Patents: Research Inputs and the Value of Innovativeness in Invention," NBER Working Papers 18494, National Bureau of Economic Research, Inc.
    14. Fama, Eugene F. & French, Kenneth R., 2015. "Incremental variables and the investment opportunity set," Journal of Financial Economics, Elsevier, vol. 117(3), pages 470-488.
    15. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    16. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    17. Tobias J. Moskowitz & Mark Grinblatt, 1999. "Do Industries Explain Momentum?," Journal of Finance, American Finance Association, vol. 54(4), pages 1249-1290, August.
    18. Narasimhan Jegadeesh & Sheridan Titman, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, April.
    19. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    20. Zhi Da & Qianqiu Liu & Ernst Schaumburg, 2014. "A Closer Look at the Short-Term Return Reversal," Management Science, INFORMS, vol. 60(3), pages 658-674, March.
    21. Brennan, Michael J & Jegadeesh, Narasimhan & Swaminathan, Bhaskaran, 1993. "Investment Analysis and the Adjustment of Stock Prices to Common Information," The Review of Financial Studies, Society for Financial Studies, vol. 6(4), pages 799-824.
    22. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    23. Fung, Michael K., 2003. "Technological proximity and co-movements of stock returns," Economics Letters, Elsevier, vol. 79(1), pages 131-136, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yang & Liang, Yanzi & Lan, Xinchen & Lu, Zheng, 2024. "Nonparametric statistical inference for stochastic optimal control problems and its applications for financial investment," Finance Research Letters, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlag, Christian & Zeng, Kailin, 2019. "Horizontal industry relationships and return predictability," SAFE Working Paper Series 256, Leibniz Institute for Financial Research SAFE.
    2. Schlag, Christian & Zeng, Kailin, 2019. "Horizontal industry relationships and return predictability," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 310-330.
    3. Kailin Zeng & Ebenezer Fiifi Emire Atta Mills, 2023. "Can economic links explain lead–lag relations across firms?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1338-1363, April.
    4. Lee, Charles M.C. & Shi, Terrence Tianshuo & Sun, Stephen Teng & Zhang, Ran, 2024. "Production complementarity and information transmission across industries," Journal of Financial Economics, Elsevier, vol. 155(C).
    5. Lee, Charles M.C. & Sun, Stephen Teng & Wang, Rongfei & Zhang, Ran, 2019. "Technological links and predictable returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 76-96.
    6. Yu, Miao & Hu, Xiaolu & Zhong, Angel, 2023. "Trade links and return predictability: The Australian evidence," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    7. Laopodis, Nikiforos T., 2016. "Industry returns, market returns and economic fundamentals: Evidence for the United States," Economic Modelling, Elsevier, vol. 53(C), pages 89-106.
    8. Cohen, Lauren & Lou, Dong, 2011. "Complicated firms," LSE Research Online Documents on Economics 119066, London School of Economics and Political Science, LSE Library.
    9. Cohen, Lauren & Lou, Dong, 2012. "Complicated firms," Journal of Financial Economics, Elsevier, vol. 104(2), pages 383-400.
    10. Sharifkhani, Ali & Simutin, Mikhail, 2021. "Feedback loops in industry trade networks and the term structure of momentum profits," Journal of Financial Economics, Elsevier, vol. 141(3), pages 1171-1187.
    11. Turan G. Bali & Andriy Bodnaruk & Anna Scherbina & Yi Tang, 2018. "Unusual News Flow and the Cross Section of Stock Returns," Management Science, INFORMS, vol. 64(9), pages 4137-4155, September.
    12. Yi, Biao & Guo, Shuxin, 2022. "Common analyst links and predictable returns: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    13. Zareei, Abalfazl, 2021. "Cross-momentum: Tracking idiosyncratic shocks," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 177-199.
    14. Hsiu-Lang Chen, 2018. "Information diffusion of upstream and downstream industry-wide earnings surprises and its implications," Review of Quantitative Finance and Accounting, Springer, vol. 51(3), pages 751-784, October.
    15. Zaremba, Adam & Long, Huaigang & Karathanasopoulos, Andreas, 2019. "Short-term momentum (almost) everywhere," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    16. Baltzer, Markus & Jank, Stephan & Smajlbegovic, Esad, 2019. "Who trades on momentum?," Journal of Financial Markets, Elsevier, vol. 42(C), pages 56-74.
    17. Wu, Yuliang & Mazouz, Khelifa, 2016. "Long-term industry reversals," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 236-250.
    18. Chen, Zilin & Chu, Liya & Liang, Dawei & Tu, Jun, 2022. "Far away from home: Investors’ underreaction to geographically dispersed information," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    19. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    20. Chenchen Li & Rui Li & Xundi Diao & Chongfeng Wu, 2020. "Market segmentation and supply‐chain predictability: evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1531-1562, June.

    More about this item

    Keywords

    Innovation link; Patent citation; Information diffusion; Return predictability;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:83:y:2022:i:c:s1057521922001867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.