IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.08276.html
   My bibliography  Save this paper

Computer vision-enriched discrete choice models, with an application to residential location choice

Author

Listed:
  • Sander van Cranenburgh
  • Francisco Garrido-Valenzuela

Abstract

Visual imagery is indispensable to many multi-attribute decision situations. Examples of such decision situations in travel behaviour research include residential location choices, vehicle choices, tourist destination choices, and various safety-related choices. However, current discrete choice models cannot handle image data and thus cannot incorporate information embedded in images into their representations of choice behaviour. This gap between discrete choice models' capabilities and the real-world behaviour it seeks to model leads to incomplete and, possibly, misleading outcomes. To solve this gap, this study proposes "Computer Vision-enriched Discrete Choice Models" (CV-DCMs). CV-DCMs can handle choice tasks involving numeric attributes and images by integrating computer vision and traditional discrete choice models. Moreover, because CV-DCMs are grounded in random utility maximisation principles, they maintain the solid behavioural foundation of traditional discrete choice models. We demonstrate the proposed CV-DCM by applying it to data obtained through a novel stated choice experiment involving residential location choices. In this experiment, respondents faced choice tasks with trade-offs between commute time, monthly housing cost and street-level conditions, presented using images. As such, this research contributes to the growing body of literature in the travel behaviour field that seeks to integrate discrete choice modelling and machine learning.

Suggested Citation

  • Sander van Cranenburgh & Francisco Garrido-Valenzuela, 2023. "Computer vision-enriched discrete choice models, with an application to residential location choice," Papers 2308.08276, arXiv.org.
  • Handle: RePEc:arx:papers:2308.08276
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.08276
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    3. Basu, Rounaq & Sevtsuk, Andres, 2022. "How do street attributes affect willingness-to-walk? City-wide pedestrian route choice analysis using big data from Boston and San Francisco," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 1-19.
    4. Beck, Matthew J. & Rose, John M. & Hensher, David A., 2013. "Environmental attitudes and emissions charging: An example of policy implications for vehicle choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 171-182.
    5. Childers, Terry L & Houston, Michael J & Heckler, Susan E, 1985. "Measurement of Individual Differences in Visual versus Verbal Information Processing," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 12(2), pages 125-134, September.
    6. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    7. Train, Kenneth & Wilson, Wesley W., 2008. "Estimation on stated-preference experiments constructed from revealed-preference choices," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 191-203, March.
    8. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    9. Yencha, Christopher, 2019. "Valuing walkability: New evidence from computer vision methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 689-709.
    10. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    11. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    12. Brian Lee & Paul Waddell, 2010. "Residential mobility and location choice: a nested logit model with sampling of alternatives," Transportation, Springer, vol. 37(4), pages 587-601, July.
    13. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    14. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    15. Brett Smith & Doina Olaru, 2013. "Lifecycle Stages and Residential Location Choice in the Presence of Latent Preference Heterogeneity," Environment and Planning A, , vol. 45(10), pages 2495-2514, October.
    16. van Cranenburgh, S. & Chorus, C.G. & van Wee, B., 2014. "Vacation behaviour under high travel cost conditions – A stated preference of revealed preference approach," Tourism Management, Elsevier, vol. 43(C), pages 105-118.
    17. Tillema, Taede & van Wee, Bert & Ettema, Dick, 2010. "The influence of (toll-related) travel costs in residential location decisions of households: A stated choice approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 785-796, December.
    18. Jim Lee & Yuxia Huang, 2022. "Covid-19 impact on US housing markets: evidence from spatial regression models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 17(3), pages 395-415, July.
    19. Bert van Wee, 2009. "Self‐Selection: A Key to a Better Understanding of Location Choices, Travel Behaviour and Transport Externalities?," Transport Reviews, Taylor & Francis Journals, vol. 29(3), pages 279-292, January.
    20. Stephane Hess & Andrew Daly & Richard Batley, 2018. "Revisiting consistency with random utility maximisation: theory and implications for practical work," Theory and Decision, Springer, vol. 84(2), pages 181-204, March.
    21. Guevara, C. Angelo & Hess, Stephane, 2019. "A control-function approach to correct for endogeneity in discrete choice models estimated on SP-off-RP data and contrasts with an earlier FIML approach by Train & Wilson," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 224-239.
    22. Ton, Danique & Duives, Dorine C. & Cats, Oded & Hoogendoorn-Lanser, Sascha & Hoogendoorn, Serge P., 2019. "Cycling or walking? Determinants of mode choice in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 7-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Grange, Louis & González, Felipe & Marechal, Matthieu & Troncoso, Rodrigo, 2024. "Estimating multinomial logit models with endogenous variables: Control function versus two adapted approaches," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    2. Jia Guo & Tao Feng & Harry J. P. Timmermans, 2020. "Modeling co-dependent choice of workplace, residence and commuting mode using an error component mixed logit model," Transportation, Springer, vol. 47(2), pages 911-933, April.
    3. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    4. Sander Cranenburgh & Marco Kouwenhoven, 2021. "An artificial neural network based method to uncover the value-of-travel-time distribution," Transportation, Springer, vol. 48(5), pages 2545-2583, October.
    5. Konstantinus, Abisai & Zuidgeest, Mark & Hess, Stephane & de Jong, Gerard, 2020. "Assessing inter-urban freight mode choice preference for short-sea shipping in the Southern African Development Community region," Journal of Transport Geography, Elsevier, vol. 88(C).
    6. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    7. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    8. Durrmeyer, Isis & Martinez, Nicolas, 2022. "The Welfare Consequences of Urban Traffic Regulations," TSE Working Papers 22-1378, Toulouse School of Economics (TSE).
    9. Andani, I Gusti Ayu & La Paix Puello, Lissy & Geurs, Karst, 2021. "Modelling effects of changes in travel time and costs of toll road usage on choices for residential location, route and travel mode across population segments in the Jakarta-Bandung region, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 81-102.
    10. Ali, Azam & Kalatian, Arash & Choudhury, Charisma F., 2023. "Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Haque, Md Bashirul & Choudhury, Charisma & Hess, Stephane, 2020. "Understanding differences in residential location preferences between ownership and renting: A case study of London," Journal of Transport Geography, Elsevier, vol. 88(C).
    12. Nicholas Buchholz & Laura Doval & Jakub Kastl & Filip Matějka & Tobias Salz, 2020. "Personalized Pricing and the Value of Time: Evidence from Auctioned Cab Rides," NBER Working Papers 27087, National Bureau of Economic Research, Inc.
    13. Feo-Valero, María & Arencibia, Ana Isabel & Román, Concepción, 2016. "Analyzing discrepancies between willingness to pay and willingness to accept for freight transport attributes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 151-164.
    14. Kim, Sung Hoo & Mokhtarian, Patricia L., 2018. "Taste heterogeneity as an alternative form of endogeneity bias: Investigating the attitude-moderated effects of built environment and socio-demographics on vehicle ownership using latent class modelin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 130-150.
    15. Tran, Minh Tu & Zhang, Junyi & Chikaraishi, Makoto & Fujiwara, Akimasa, 2016. "A joint analysis of residential location, work location and commuting mode choices in Hanoi, Vietnam," Journal of Transport Geography, Elsevier, vol. 54(C), pages 181-193.
    16. Poudel, Niranjan & Singleton, Patrick A., 2024. "Willingness to pay for changes in travel time and work time: A stated choice experiment of US commuters," Research in Transportation Economics, Elsevier, vol. 103(C).
    17. Buchholz, Nicholas & Doval, Laura & Kastl, Jakub & Matejka, Filip & Salz, Tobias, 2020. "The Value of Time: Evidence From Auctioned Cab Rides," CEPR Discussion Papers 14666, C.E.P.R. Discussion Papers.
    18. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part II. Conceptualisation of external validity, sources and explanations of bias and effectiveness of mitigation methods," Journal of choice modelling, Elsevier, vol. 41(C).
    19. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    20. Gabriel Nova & Sander van Cranenburgh & Stephane Hess, 2024. "Understanding the decision-making process of choice modellers," Papers 2411.01704, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.08276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.