IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.01881.html
   My bibliography  Save this paper

The Banks Set and the Bipartisan Set May Be Disjoint

Author

Listed:
  • Felix Brandt
  • Florian Grundbacher

Abstract

Tournament solutions play an important role within social choice theory and the mathematical social sciences at large. We construct a tournament of order 36 for which the Banks set and the bipartisan set are disjoint. This implies that refinements of the Banks set, such as the minimal extending set and the tournament equilibrium set, can also be disjoint from the bipartisan set.

Suggested Citation

  • Felix Brandt & Florian Grundbacher, 2023. "The Banks Set and the Bipartisan Set May Be Disjoint," Papers 2308.01881, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2308.01881
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.01881
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hudry, Olivier, 2009. "A survey on the complexity of tournament solutions," Mathematical Social Sciences, Elsevier, vol. 57(3), pages 292-303, May.
    2. Laffond G. & Laslier, J. F. & Le Breton, M., 1996. "Condorcet choice correspondences: A set-theoretical comparison," Mathematical Social Sciences, Elsevier, vol. 31(1), pages 59-59, February.
    3. Gerhard J. Woeginger, 2003. "Banks winners in tournaments are difficult to recognize," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 20(3), pages 523-528, June.
    4. Brandt, Felix & Fischer, Felix, 2008. "Computing the minimal covering set," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 254-268, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Demuynck, 2014. "The computational complexity of rationalizing Pareto optimal choice behavior," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(3), pages 529-549, March.
    2. Demuynck, Thomas, 2011. "The computational complexity of rationalizing boundedly rational choice behavior," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 425-433.
    3. Fabrice Talla Nobibon & Laurens Cherchye & Yves Crama & Thomas Demuynck & Bram De Rock & Frits C. R. Spieksma, 2016. "Revealed Preference Tests of Collectively Rational Consumption Behavior: Formulations and Algorithms," Operations Research, INFORMS, vol. 64(6), pages 1197-1216, December.
    4. Hudry, Olivier, 2009. "A survey on the complexity of tournament solutions," Mathematical Social Sciences, Elsevier, vol. 57(3), pages 292-303, May.
    5. Joseph, Rémy-Robert, 2010. "Making choices with a binary relation: Relative choice axioms and transitive closures," European Journal of Operational Research, Elsevier, vol. 207(2), pages 865-877, December.
    6. Hudry, Olivier, 2010. "On the complexity of Slater's problems," European Journal of Operational Research, Elsevier, vol. 203(1), pages 216-221, May.
    7. Berghammer, Rudolf & Rusinowska, Agnieszka & de Swart, Harrie, 2013. "Computing tournament solutions using relation algebra and RelView," European Journal of Operational Research, Elsevier, vol. 226(3), pages 636-645.
    8. repec:hal:pseose:hal-00756696 is not listed on IDEAS
    9. repec:hal:wpaper:hal-00756696 is not listed on IDEAS
    10. Felix Brandt & Markus Brill & Felix Fischer & Paul Harrenstein, 2014. "Minimal retentive sets in tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(3), pages 551-574, March.
    11. Brandt, Felix & Fischer, Felix, 2008. "Computing the minimal covering set," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 254-268, September.
    12. Fujun Hou, 2024. "A new social welfare function with a number of desirable properties," Papers 2403.16373, arXiv.org.
    13. Scott Moser, 2015. "Majority rule and tournament solutions," Chapters, in: Jac C. Heckelman & Nicholas R. Miller (ed.), Handbook of Social Choice and Voting, chapter 6, pages 83-101, Edward Elgar Publishing.
    14. Irène Charon & Olivier Hudry, 2010. "An updated survey on the linear ordering problem for weighted or unweighted tournaments," Annals of Operations Research, Springer, vol. 175(1), pages 107-158, March.
    15. Yongjie Yang & Jiong Guo, 2017. "Possible winner problems on partial tournaments: a parameterized study," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 882-896, April.
    16. De Donder, Philippe & Le Breton, Michel & Truchon, Michel, 2000. "Choosing from a weighted tournament1," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 85-109, July.
    17. Berghammer, Rudolf & Schnoor, Henning, 2015. "Control of Condorcet voting: Complexity and a Relation-Algebraic approach," European Journal of Operational Research, Elsevier, vol. 246(2), pages 505-516.
    18. Brandl, Florian & Brandt, Felix, 2024. "A natural adaptive process for collective decision-making," Theoretical Economics, Econometric Society, vol. 19(2), May.
    19. Borm, Peter & van den Brink, Rene & Levinsky, Rene & Slikker, Marco, 2004. "On two new social choice correspondences," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 51-68, January.
    20. Daniel R. Carroll & Jim Dolmas & Eric Young, 2015. "Majority Voting: A Quantitative Investigation," Working Papers (Old Series) 1442, Federal Reserve Bank of Cleveland.
    21. Vincent Anesi, 2012. "A new old solution for weak tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 919-930, October.
    22. Daniel Carroll & Jim Dolmas & Eric Young, 2021. "The Politics of Flat Taxes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 39, pages 174-201, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.01881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.