IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v42y2014i3p551-574.html
   My bibliography  Save this article

Minimal retentive sets in tournaments

Author

Listed:
  • Felix Brandt
  • Markus Brill
  • Felix Fischer
  • Paul Harrenstein

Abstract

Tournament solutions, i.e., functions that associate with each complete and asymmetric relation on a set of alternatives a nonempty subset of the alternatives, play an important role in the mathematical social sciences at large. For any given tournament solution $$S$$ S , there is another tournament solution [InlineEquation not available: see fulltext.] which returns the union of all inclusion-minimal sets that satisfy $$S$$ S -retentiveness, a natural stability criterion with respect to $$S$$ S . Schwartz’s tournament equilibrium set ( $${ TEQ }$$ TEQ ) is defined recursively as [InlineEquation not available: see fulltext.]. In this article, we study under which circumstances a number of important and desirable properties are inherited from $$S$$ S to [InlineEquation not available: see fulltext.]. We thus obtain a hierarchy of attractive and efficiently computable tournament solutions that “approximate” $${ TEQ }$$ TEQ , which itself is computationally intractable. We further prove a weaker version of a recently disproved conjecture surrounding $${ TEQ }$$ TEQ , which establishes [InlineEquation not available: see fulltext.]—a refinement of the top cycle—as an interesting new tournament solution. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Felix Brandt & Markus Brill & Felix Fischer & Paul Harrenstein, 2014. "Minimal retentive sets in tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(3), pages 551-574, March.
  • Handle: RePEc:spr:sochwe:v:42:y:2014:i:3:p:551-574
    DOI: 10.1007/s00355-013-0740-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00355-013-0740-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00355-013-0740-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basu, Kaushik & Weibull, Jorgen W., 1991. "Strategy subsets closed under rational behavior," Economics Letters, Elsevier, vol. 36(2), pages 141-146, June.
    2. Brandt, Felix, 2011. "Minimal stable sets in tournaments," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1481-1499, July.
    3. Duggan, John & Le Breton, Michel, 1996. "Dutta's Minimal Covering Set and Shapley's Saddles," Journal of Economic Theory, Elsevier, vol. 70(1), pages 257-265, July.
    4. Kenneth J. Arrow & Herve Raynaud, 1986. "Social Choice and Multicriterion Decision-Making," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262511754, April.
    5. I. Good, 1971. "A note on condorcet sets," Public Choice, Springer, vol. 10(1), pages 97-101, March.
    6. Gilbert Laffond & Jean Lainé & Jean-François Laslier, 1996. "Composition-consistent tournament solutions and social choice functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(1), pages 75-93, January.
    7. Brandt, Felix & Harrenstein, Paul, 2011. "Set-rationalizable choice and self-stability," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1721-1731, July.
    8. Felix Brandt & Paul Harrenstein, 2010. "Characterization of dominance relations in finite coalitional games," Theory and Decision, Springer, vol. 69(2), pages 233-256, August.
    9. Laffond G. & Laslier J. F. & Le Breton M., 1993. "The Bipartisan Set of a Tournament Game," Games and Economic Behavior, Elsevier, vol. 5(1), pages 182-201, January.
    10. Felix Brandt & Maria Chudnovsky & Ilhee Kim & Gaku Liu & Sergey Norin & Alex Scott & Paul Seymour & Stephan Thomassé, 2013. "A counterexample to a conjecture of Schwartz," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 739-743, March.
    11. Gerhard J. Woeginger, 2003. "Banks winners in tournaments are difficult to recognize," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 20(3), pages 523-528, June.
    12. Nicolas Houy, 2009. "Still more on the Tournament Equilibrium Set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 32(1), pages 93-99, January.
    13. Felix Brandt & Felix Fischer & Paul Harrenstein & Maximilian Mair, 2010. "A computational analysis of the tournament equilibrium set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 597-609, April.
    14. Brandt, Felix & Fischer, Felix, 2008. "Computing the minimal covering set," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 254-268, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Brandt & Markus Brill & Hans Georg Seedig & Warut Suksompong, 2018. "On the structure of stable tournament solutions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(2), pages 483-507, March.
    2. Felix Brandt & Markus Brill & Hans Georg Seedig & Warut Suksompong, 2020. "On the Structure of Stable Tournament Solutions," Papers 2004.01651, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandt, Felix & Harrenstein, Paul & Seedig, Hans Georg, 2017. "Minimal extending sets in tournaments," Mathematical Social Sciences, Elsevier, vol. 87(C), pages 55-63.
    2. Brandt, Felix, 2011. "Minimal stable sets in tournaments," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1481-1499, July.
    3. Felix Brandt & Markus Brill & Paul Harrenstein, 2018. "Extending tournament solutions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(2), pages 193-222, August.
    4. Felix Brandt & Markus Brill & Hans Georg Seedig & Warut Suksompong, 2018. "On the structure of stable tournament solutions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(2), pages 483-507, March.
    5. Felix Brandt, 2015. "Set-monotonicity implies Kelly-strategyproofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 793-804, December.
    6. Felix Brandt & Markus Brill & Hans Georg Seedig & Warut Suksompong, 2020. "On the Structure of Stable Tournament Solutions," Papers 2004.01651, arXiv.org.
    7. Fujun Hou, 2024. "A new social welfare function with a number of desirable properties," Papers 2403.16373, arXiv.org.
    8. Aleksei Y. Kondratev & Vladimir V. Mazalov, 2020. "Tournament solutions based on cooperative game theory," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 119-145, March.
    9. Thomas Demuynck, 2014. "The computational complexity of rationalizing Pareto optimal choice behavior," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(3), pages 529-549, March.
    10. Berghammer, Rudolf & Rusinowska, Agnieszka & de Swart, Harrie, 2013. "Computing tournament solutions using relation algebra and RelView," European Journal of Operational Research, Elsevier, vol. 226(3), pages 636-645.
    11. Josep E., Peris & Begoña, Subiza, 2015. "Rationalizable Choice and Standards of Behavior," QM&ET Working Papers 15-5, University of Alicante, D. Quantitative Methods and Economic Theory.
    12. repec:hal:pseose:hal-00756696 is not listed on IDEAS
    13. Felix Brandt & Maria Chudnovsky & Ilhee Kim & Gaku Liu & Sergey Norin & Alex Scott & Paul Seymour & Stephan Thomassé, 2013. "A counterexample to a conjecture of Schwartz," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 739-743, March.
    14. Demuynck, Thomas, 2011. "The computational complexity of rationalizing boundedly rational choice behavior," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 425-433.
    15. John Duggan, 2013. "Uncovered sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 489-535, September.
    16. Josep E. Peris & Begoña Subiza, 2023. "Rational stability of choice functions," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(3), pages 580-598, September.
    17. Scott Moser & John W. Patty & Elizabeth Maggie Penn, 2009. "The Structure of Heresthetical Power," Journal of Theoretical Politics, , vol. 21(2), pages 139-159, April.
    18. repec:hal:wpaper:hal-00756696 is not listed on IDEAS
    19. Felix Brandt & Felix Fischer & Paul Harrenstein & Maximilian Mair, 2010. "A computational analysis of the tournament equilibrium set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 597-609, April.
    20. Felix Brandt & Chris Dong, 2022. "On Locally Rationalizable Social Choice Functions," Papers 2204.05062, arXiv.org, revised Mar 2024.
    21. Fabrice Talla Nobibon & Laurens Cherchye & Yves Crama & Thomas Demuynck & Bram De Rock & Frits C. R. Spieksma, 2016. "Revealed Preference Tests of Collectively Rational Consumption Behavior: Formulations and Algorithms," Operations Research, INFORMS, vol. 64(6), pages 1197-1216, December.
    22. De Donder, Philippe & Le Breton, Michel & Truchon, Michel, 2000. "Choosing from a weighted tournament1," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 85-109, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:42:y:2014:i:3:p:551-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.