IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.12245.html
   My bibliography  Save this paper

Option Hedging with Risk Averse Reinforcement Learning

Author

Listed:
  • Edoardo Vittori
  • Michele Trapletti
  • Marcello Restelli

Abstract

In this paper we show how risk-averse reinforcement learning can be used to hedge options. We apply a state-of-the-art risk-averse algorithm: Trust Region Volatility Optimization (TRVO) to a vanilla option hedging environment, considering realistic factors such as discrete time and transaction costs. Realism makes the problem twofold: the agent must both minimize volatility and contain transaction costs, these tasks usually being in competition. We use the algorithm to train a sheaf of agents each characterized by a different risk aversion, so to be able to span an efficient frontier on the volatility-p\&l space. The results show that the derived hedging strategy not only outperforms the Black \& Scholes delta hedge, but is also extremely robust and flexible, as it can efficiently hedge options with different characteristics and work on markets with different behaviors than what was used in training.

Suggested Citation

  • Edoardo Vittori & Michele Trapletti & Marcello Restelli, 2020. "Option Hedging with Risk Averse Reinforcement Learning," Papers 2010.12245, arXiv.org.
  • Handle: RePEc:arx:papers:2010.12245
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.12245
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    2. Igor Halperin, 2019. "The QLBS Q-Learner goes NuQLear: fitted Q iteration, inverse RL, and option portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1543-1553, September.
    3. Hull, John & White, Alan, 2017. "Optimal delta hedging for options," Journal of Banking & Finance, Elsevier, vol. 82(C), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Mandelli & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "Reinforcement Learning for Credit Index Option Hedging," Papers 2307.09844, arXiv.org.
    2. Federico Giorgi & Stefano Herzel & Paolo Pigato, 2023. "A Reinforcement Learning Algorithm for Trading Commodities," CEIS Research Paper 552, Tor Vergata University, CEIS, revised 18 Feb 2023.
    3. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    4. Zheng Gong & Carmine Ventre & John O'Hara, 2021. "The Efficient Hedging Frontier with Deep Neural Networks," Papers 2104.05280, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoran Stoiljkovic, 2023. "Applying Reinforcement Learning to Option Pricing and Hedging," Papers 2310.04336, arXiv.org.
    2. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    3. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    4. Maciej Wysocki & Robert 'Slepaczuk, 2024. "Construction and Hedging of Equity Index Options Portfolios," Papers 2407.13908, arXiv.org.
    5. Mi‐Hsiu Chiang & Hsin‐Yu Chiu & Robin K. Chou, 2021. "Relevance of the disposition effect on the options market: New evidence," Financial Management, Financial Management Association International, vol. 50(1), pages 75-106, March.
    6. Yu, Xiao-Jian & Wang, Zi-Ling & Xiao, Wei-Lin, 2020. "Is the nonlinear hedge of options more effective?—Evidence from the SSE 50 ETF options in China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    8. Horikawa, Hiroaki & Nakagawa, Kei, 2024. "Relationship between deep hedging and delta hedging: Leveraging a statistical arbitrage strategy," Finance Research Letters, Elsevier, vol. 62(PA).
    9. Shvimer, Yossi & Herbon, Avi, 2020. "Comparative empirical study of binomial call-option pricing methods using S&P 500 index data," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    10. Peng, Cheng & Li, Shuang & Zhao, Yanlong & Bao, Ying, 2021. "Sample average approximation of CVaR-based hedging problem with a deep-learning solution," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    11. Chunhui Qiao & Xiangwei Wan, 2024. "Enhancing Black-Scholes Delta Hedging via Deep Learning," Papers 2407.19367, arXiv.org, revised Aug 2024.
    12. Roberto Daluiso & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "CVA Hedging by Risk-Averse Stochastic-Horizon Reinforcement Learning," Papers 2312.14044, arXiv.org.
    13. Pascal François & Lars Stentoft, 2021. "Smile‐implied hedging with volatility risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1220-1240, August.
    14. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    15. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Hedging option books using neural-SDE market models," Papers 2205.15991, arXiv.org.
    16. Xia, Kun & Yang, Xuewei & Zhu, Peng, 2023. "Delta hedging and volatility-price elasticity: A two-step approach," Journal of Banking & Finance, Elsevier, vol. 153(C).
    17. Francesco Mandelli & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "Reinforcement Learning for Credit Index Option Hedging," Papers 2307.09844, arXiv.org.
    18. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    19. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    20. Nian, Ke & Coleman, Thomas F & Li, Yuying, 2021. "Learning sequential option hedging models from market data," Journal of Banking & Finance, Elsevier, vol. 133(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.12245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.