IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.20679.html
   My bibliography  Save this paper

MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU

Author

Listed:
  • Peng Zhu
  • Yuante Li
  • Yifan Hu
  • Sheng Xiang
  • Qinyuan Liu
  • Dawei Cheng
  • Yuqi Liang

Abstract

As financial markets grow increasingly complex in the big data era, accurate stock prediction has become more critical. Traditional time series models, such as GRUs, have been widely used but often struggle to capture the intricate nonlinear dynamics of markets, particularly in the flexible selection and effective utilization of key historical information. Recently, methods like Graph Neural Networks and Reinforcement Learning have shown promise in stock prediction but require high data quality and quantity, and they tend to exhibit instability when dealing with data sparsity and noise. Moreover, the training and inference processes for these models are typically complex and computationally expensive, limiting their broad deployment in practical applications. Existing approaches also generally struggle to capture unobservable latent market states effectively, such as market sentiment and expectations, microstructural factors, and participant behavior patterns, leading to an inadequate understanding of market dynamics and subsequently impact prediction accuracy. To address these challenges, this paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU. First, we enhance the GRU model by replacing the reset gate with an attention mechanism, thereby increasing the model's flexibility in selecting and utilizing historical information. Second, we design a multi-head cross-attention mechanism for learning unobservable latent market state representations, which are further enriched through interactions with both temporal features and cross-sectional features. Finally, extensive experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics. Additionally, its successful application in real-world fund management operations confirms its effectiveness and practicality.

Suggested Citation

  • Peng Zhu & Yuante Li & Yifan Hu & Sheng Xiang & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU," Papers 2410.20679, arXiv.org.
  • Handle: RePEc:arx:papers:2410.20679
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.20679
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roger Farmer, 2012. "The Stock Market Crash of 2008 Caused the Great Recession," 2012 Meeting Papers 145, Society for Economic Dynamics.
    2. Greenwood, Jeremy & Smith, Bruce D., 1997. "Financial markets in development, and the development of financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 21(1), pages 145-181, January.
    3. Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
    4. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    5. Farmer, Roger E.A., 2012. "The stock market crash of 2008 caused the Great Recession: Theory and evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 693-707.
    6. Jianian Wang & Sheng Zhang & Yanghua Xiao & Rui Song, 2021. "A Review on Graph Neural Network Methods in Financial Applications," Papers 2111.15367, arXiv.org, revised Apr 2022.
    7. Zihan Chen & Lei Nico Zheng & Cheng Lu & Jialu Yuan & Di Zhu, 2023. "ChatGPT Informed Graph Neural Network for Stock Movement Prediction," Papers 2306.03763, arXiv.org, revised Sep 2023.
    8. Farzan Soleymani & Eric Paquet, 2021. "Deep Graph Convolutional Reinforcement Learning for Financial Portfolio Management -- DeepPocket," Papers 2105.08664, arXiv.org.
    9. Marco Corazza & Andrea Sangalli, 2015. "Q-Learning and SARSA: a comparison between two intelligent stochastic control approaches for financial trading," Working Papers 2015:15, Department of Economics, University of Venice "Ca' Foscari", revised 2015.
    10. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
    2. Sin-Yu Ho, 2018. "Determinants of economic growth in Hong Kong: The role of stock market development," Cogent Economics & Finance, Taylor & Francis Journals, vol. 6(1), pages 1510718-151, January.
    3. Hollander, Hylton & Liu, Guangling, 2016. "Credit spread variability in the U.S. business cycle: The Great Moderation versus the Great Recession," Journal of Banking & Finance, Elsevier, vol. 67(C), pages 37-52.
    4. Greg Kaplan & Guido Menzio, 2016. "Shopping Externalities and Self-Fulfilling Unemployment Fluctuations," Journal of Political Economy, University of Chicago Press, vol. 124(3), pages 771-825.
    5. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    6. repec:spo:wpmain:info:hdl:2441/qqo2oivo980taefakkgk0sv9m is not listed on IDEAS
    7. Pan, Wei-Fong, 2018. "Does the stock market really cause unemployment? A cross-country analysis," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 34-43.
    8. Dées, Stephane & Zimic, Srečko, 2019. "Animal spirits, fundamental factors and business cycle fluctuations," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    9. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    10. Kydland, Finn E. & Zarazaga, Carlos E.J.M., 2016. "Fiscal sentiment and the weak recovery from the Great Recession: A quantitative exploration," Journal of Monetary Economics, Elsevier, vol. 79(C), pages 109-125.
    11. Athreya, Kartik B., 2014. "Big Ideas in Macroeconomics: A Nontechnical View," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262019736, April.
    12. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    13. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    14. Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
    15. Choi, Sangyup & Loungani, Prakash, 2015. "Uncertainty and unemployment: The effects of aggregate and sectoral channels," Journal of Macroeconomics, Elsevier, vol. 46(C), pages 344-358.
    16. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    17. Greg Kaplan & Guido Menzio, 2016. "Shopping Externalities and Self-Fulfilling Unemployment Fluctuations," Journal of Political Economy, University of Chicago Press, vol. 124(3), pages 771-825.
    18. James B. Bullard, 2012. "Death of a theory," Review, Federal Reserve Bank of St. Louis, vol. 94(Mar), pages 83-102.
    19. Sheng, Yankai & Qu, Yuanyu & Ma, Ding, 2024. "Stock price crash prediction based on multimodal data machine learning models," Finance Research Letters, Elsevier, vol. 62(PA).
    20. Ülkü, Numan & Kuruppuarachchi, Duminda & Kuzmicheva, Olga, 2017. "Stock market's response to real output shocks in Eastern European frontier markets: A VARwAL model," Emerging Markets Review, Elsevier, vol. 33(C), pages 140-154.
    21. Farmer, Roger E.A. & Platonov, Konstantin, 2019. "Animal spirits in a monetary model," European Economic Review, Elsevier, vol. 115(C), pages 60-77.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.20679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.