IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.10590.html
   My bibliography  Save this paper

Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators

Author

Listed:
  • Lin Liu
  • Rajarshi Mukherjee
  • James M. Robins

Abstract

The class of doubly-robust (DR) functionals studied by Rotnitzky et al. (2021) is of central importance in economics and biostatistics. It strictly includes both (i) the class of mean-square continuous functionals that can be written as an expectation of an affine functional of a conditional expectation studied by Chernozhukov et al. (2022b) and (ii) the class of functionals studied by Robins et al. (2008). The present state-of-the-art estimators for DR functionals $\psi$ are double-machine-learning (DML) estimators (Chernozhukov et al., 2018). A DML estimator $\widehat{\psi}_{1}$ of $\psi$ depends on estimates $\widehat{p} (x)$ and $\widehat{b} (x)$ of a pair of nuisance functions $p(x)$ and $b(x)$, and is said to satisfy "rate double-robustness" if the Cauchy--Schwarz upper bound of its bias is $o (n^{- 1/2})$. Were it achievable, our scientific goal would have been to construct valid, assumption-lean (i.e. no complexity-reducing assumptions on $b$ or $p$) tests of the validity of a nominal $(1 - \alpha)$ Wald confidence interval (CI) centered at $\widehat{\psi}_{1}$. But this would require a test of the bias to be $o (n^{-1/2})$, which can be shown not to exist. We therefore adopt the less ambitious goal of falsifying, when possible, an analyst's justification for her claim that the reported $(1 - \alpha)$ Wald CI is valid. In many instances, an analyst justifies her claim by imposing complexity-reducing assumptions on $b$ and $p$ to ensure "rate double-robustness". Here we exhibit valid, assumption-lean tests of $H_{0}$: "rate double-robustness holds", with non-trivial power against certain alternatives. If $H_{0}$ is rejected, we will have falsified her justification. However, no assumption-lean test of $H_{0}$, including ours, can be a consistent test. Thus, the failure of our test to reject is not meaningful evidence in favor of $H_{0}$.

Suggested Citation

  • Lin Liu & Rajarshi Mukherjee & James M. Robins, 2023. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Papers 2306.10590, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2306.10590
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.10590
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    2. Hansjörg Albrecher & Martin Bladt & Mogens Bladt, 2021. "Multivariate matrix Mittag–Leffler distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 369-394, April.
    3. Guo, Nan & Wang, Fang & Yang, Jingping, 2017. "Remarks on composite Bernstein copula and its application to credit risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 38-48.
    4. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    5. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 35-51.
    6. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    7. Andreas Masuhr, 2018. "Bayesian Estimation of Generalized Partition of Unity Copulas," CQE Working Papers 7318, Center for Quantitative Economics (CQE), University of Muenster.
    8. Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.
    9. Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
    10. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    11. Huang, J.S. & Dou, Xiaoling & Kuriki, Satoshi & Lin, G.D., 2013. "Dependence structure of bivariate order statistics with applications to Bayramoglu’s distributions," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 201-208.
    12. Durante, Fabrizio & Sánchez, Juan Fernández, 2012. "On the approximation of copulas via shuffles of Min," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1761-1767.
    13. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2016. "The Empirical Beta Copula," LIDAM Discussion Papers ISBA 2016032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. R. D. Baker & I. G. McHale, 2009. "Modelling the probability distribution of prize winnings in the UK National Lottery: consequences of conscious selection," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 813-834, October.
    15. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2022. "Stochastic representation of FGM copulas using multivariate Bernoulli random variables," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    16. Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.
    17. Dou, Xiaoling & Kuriki, Satoshi & Lin, Gwo Dong & Richards, Donald, 2016. "EM algorithms for estimating the Bernstein copula," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 228-245.
    18. Lin, G.D. & Huang, J.S., 2010. "A note on the maximum correlation for Baker's bivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2227-2233, October.
    19. Xiaoling Dou & Satoshi Kuriki & Gwo Dong Lin & Donald Richards, 2021. "Dependence Properties of B-Spline Copulas," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 283-311, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.10590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.