IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.04521.html
   My bibliography  Save this paper

A dynamic optimal execution strategy under stochastic price recovery

Author

Listed:
  • Masashi Ieda

Abstract

In the present paper, we study the optimal execution problem under stochastic price recovery based on limit order book dynamics. We model price recovery after execution of a large order by accelerating the arrival of the refilling order, which is defined as a Cox process whose intensity increases by the degree of the market impact. We include not only the market order but also the limit order in our strategy in a restricted fashion. We formulate the problem as a combined stochastic control problem over a finite time horizon. The corresponding Hamilton-Jacobi-Bellman quasi-variational inequality is solved numerically. The optimal strategy obtained consists of three components: (i) the initial large trade; (ii) the unscheduled small trades during the period; (iii) the terminal large trade. The size and timing of the trade is governed by the tolerance for market impact depending on the state at each time step, and hence the strategy behaves dynamically. We also provide competitive results due to inclusion of the limit order, even though a limit order is allowed under conservative evaluation of the execution price.

Suggested Citation

  • Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," Papers 1502.04521, arXiv.org.
  • Handle: RePEc:arx:papers:1502.04521
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.04521
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takashi Kato, 2009. "An Optimal Execution Problem with Market Impact," Papers 0907.3282, arXiv.org, revised Dec 2014.
    2. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    3. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    4. Takashi Kato, 2014. "An optimal execution problem with market impact," Finance and Stochastics, Springer, vol. 18(3), pages 695-732, July.
    5. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    6. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    7. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    8. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    9. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    10. Hall, Anthony D. & Hautsch, Nikolaus, 2007. "Modelling the buy and sell intensity in a limit order book market," Journal of Financial Markets, Elsevier, vol. 10(3), pages 249-286, August.
    11. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    12. Esser, Angelika & Monch, Burkart, 2007. "The navigation of an iceberg: The optimal use of hidden orders," Finance Research Letters, Elsevier, vol. 4(2), pages 68-81, June.
    13. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    14. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    15. Damiano Brigo & Giuseppe Di Graziano, 2014. "Optimal trade execution under displaced diffusions dynamics across different risk criteria," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(02), pages 1-17.
    16. Takashi Kato, 2011. "An Optimal Execution Problem with a Geometric Ornstein-Uhlenbeck Price Process," Papers 1107.1787, arXiv.org, revised Jul 2014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damiano Brigo & Clement Piat, 2016. "Static vs adapted optimal execution strategies in two benchmark trading models," Papers 1609.05523, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-24, December.
    2. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    4. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    5. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    6. Hugh L. Christensen & Richard E. Turner & Simon I. Hill & Simon J. Godsill, 2013. "Rebuilding the limit order book: sequential Bayesian inference on hidden states," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1779-1799, November.
    7. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    8. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    9. Samuel N. Cohen & Lukasz Szpruch, 2011. "A limit order book model for latency arbitrage," Papers 1110.4811, arXiv.org.
    10. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    11. Wei Cui & Anthony Brabazon & Michael O'Neill, 2011. "Dynamic trade execution: a grammatical evolution approach," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 2(1/2), pages 4-31.
    12. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    13. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    14. Julius Bonart & Martin Gould, 2015. "Latency and liquidity provision in a limit order book," Papers 1511.04116, arXiv.org, revised Jun 2016.
    15. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    16. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    17. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    18. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
    19. Takashi Kato, 2017. "An Optimal Execution Problem with S-shaped Market Impact Functions," Papers 1706.09224, arXiv.org, revised Oct 2017.
    20. Lokka, A. & Xu, Junwei, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model," LSE Research Online Documents on Economics 106977, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.04521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.