IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i10p5671-5683.html
   My bibliography  Save this article

Modelling short and long-term risks in power markets: Empirical evidence from Nord Pool

Author

Listed:
  • Nomikos, Nikos K.
  • Soldatos, Orestes A.

Abstract

In this paper we propose a three-factor spike model that accounts for different speeds of mean reversion between normal and spiky shocks in the Scandinavian power market. In this model both short and long-run factors are unobservable and are hence estimated as latent variables using the Kalman filter. The proposed model has several advantages. First, it seems to capture in a parsimonious way the most important risks that practitioners face in the market, such as spike risk, short-term risk and long-term risk. Second, it explains the seasonal risk premium observed in the market and improves the fit between theoretical and observed forward prices, particularly for long-dated forward contracts. Finally, closed-form solutions for forward contracts, derived from the model, are consistent with the fact that the correlation between contracts of different maturities is imperfect. The resulting model is very promising, providing a very useful policy analysis and financial engineering tool to market participants for risk management and derivative pricing particularly for long-dated contracts.

Suggested Citation

  • Nomikos, Nikos K. & Soldatos, Orestes A., 2010. "Modelling short and long-term risks in power markets: Empirical evidence from Nord Pool," Energy Policy, Elsevier, vol. 38(10), pages 5671-5683, October.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:10:p:5671-5683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00386-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    2. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    3. Nomikos, Nikos K. & Soldatos, Orestes A., 2010. "Analysis of model implied volatility for jump diffusion models: Empirical evidence from the Nordpool market," Energy Economics, Elsevier, vol. 32(2), pages 302-312, March.
    4. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    6. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    7. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    8. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(1), pages 53-65, March.
    9. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    10. Longstaff, Francis & Wang, Ashley, 2002. "Electricity Forward Prices: A High-Frequency Empirical Analysis," University of California at Los Angeles, Anderson Graduate School of Management qt7mh2m2bt, Anderson Graduate School of Management, UCLA.
    11. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    12. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    13. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    14. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    15. Longstaff, Francis A & Wang, Ashley, 2002. "ELECTRICITY FORWARD PRICES: A High-Frequency Empirical Analysis," University of California at Los Angeles, Anderson Graduate School of Management qt3mw4q41x, Anderson Graduate School of Management, UCLA.
    16. N. K. Nomikos & O. Soldatos, 2008. "Using Affine Jump Diffusion Models for Modelling and Pricing Electricity Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(1), pages 41-71.
    17. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    18. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    19. Olsina, Fernando & Garces, Francisco & Haubrich, H.-J., 2006. "Modeling long-term dynamics of electricity markets," Energy Policy, Elsevier, vol. 34(12), pages 1411-1433, August.
    20. Villaplana Conde, Pablo, 2003. "Pricing power derivatives: a two-factor jump-diffusion approach," DEE - Working Papers. Business Economics. WB wb031805, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    21. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    22. repec:dau:papers:123456789/1433 is not listed on IDEAS
    23. Bergstrom, A. R., 1988. "The History of Continuous-Time Econometric Models," Econometric Theory, Cambridge University Press, vol. 4(3), pages 365-383, December.
    24. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    25. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    26. Cox, John C. & Ingersoll, Jonathan Jr. & Ross, Stephen A., 1981. "The relation between forward prices and futures prices," Journal of Financial Economics, Elsevier, vol. 9(4), pages 321-346, December.
    27. Mihaela Manoliu & Stathis Tompaidis, 2002. "Energy futures prices: term structure models with Kalman filter estimation," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 21-43.
    28. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    29. George Chacko, 2002. "Pricing Interest Rate Derivatives: A General Approach," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 195-241, March.
    30. Ball, Clifford A & Torous, Walter N, 1985. "On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    2. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    3. Zorana Božić & Dušan Dobromirov & Jovana Arsić & Mladen Radišić & Beata Ślusarczyk, 2020. "Power Exchange Prices: Comparison of Volatility in European Markets," Energies, MDPI, vol. 13(21), pages 1-15, October.
    4. Victoria V. Perskaya, 2020. "The Comparison of the Energy Markets of the EAEU and the Scandinavian Countries: Best Practices for the Energy Integration," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 81-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nomikos, Nikos K. & Soldatos, Orestes A., 2010. "Analysis of model implied volatility for jump diffusion models: Empirical evidence from the Nordpool market," Energy Economics, Elsevier, vol. 32(2), pages 302-312, March.
    2. N. K. Nomikos & O. Soldatos, 2008. "Using Affine Jump Diffusion Models for Modelling and Pricing Electricity Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(1), pages 41-71.
    3. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    4. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    5. Villaplana Conde, Pablo, 2003. "Pricing power derivatives: a two-factor jump-diffusion approach," DEE - Working Papers. Business Economics. WB wb031805, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    6. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, December.
    7. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    8. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    9. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    10. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    11. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
    12. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    13. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    14. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    15. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.
    16. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    19. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    20. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:10:p:5671-5683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.