IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.19089.html
   My bibliography  Save this paper

Impulse Response Analysis of Structural Nonlinear Time Series Models

Author

Listed:
  • Giovanni Ballarin

Abstract

This paper proposes a semiparametric sieve approach to estimate impulse response functions of nonlinear time series within a general class of structural autoregressive models. We prove that a two-step procedure can flexibly accommodate nonlinear specifications while avoiding the need to choose of fixed parametric forms. Sieve impulse responses are proven to be consistent by deriving uniform estimation guarantees, and an iterative algorithm makes it straightforward to compute them in practice. With simulations, we show that the proposed semiparametric approach proves effective against misspecification while suffering only minor efficiency losses. In a US monetary policy application, we find that the pointwise sieve GDP response associated with an interest rate increase is larger than that of a linear model. Finally, in an analysis of interest rate uncertainty shocks, sieve responses imply significantly more substantial contractionary effects both on production and inflation.

Suggested Citation

  • Giovanni Ballarin, 2023. "Impulse Response Analysis of Structural Nonlinear Time Series Models," Papers 2305.19089, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2305.19089
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.19089
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan J. Auerbach & Yuriy Gorodnichenko, 2012. "Measuring the Output Responses to Fiscal Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 1-27, May.
    2. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    3. Lutz Kilian & Clara Vega, 2011. "Do Energy Prices Respond to U.S. Macroeconomic News? A Test of the Hypothesis of Predetermined Energy Prices," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 660-671, May.
    4. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    5. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    6. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    7. Potter, Simon M., 2000. "Nonlinear impulse response functions," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1425-1446, September.
    8. Lutz Kilian & Robert J. Vigfusson, 2011. "Are the responses of the U.S. economy asymmetric in energy price increases and decreases?," Quantitative Economics, Econometric Society, vol. 2(3), pages 419-453, November.
    9. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    10. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    11. Mario Forni & Luca Gambetti & Nicolò Maffei‐Faccioli & Luca Sala, 2024. "Nonlinear Transmission of Financial Shocks: Some New Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(1), pages 5-33, February.
    12. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    13. Matias D. Cattaneo & Ricardo P. Masini & William G. Underwood, 2022. "Yurinskii's Coupling for Martingales," Papers 2210.00362, arXiv.org, revised Sep 2024.
    14. Kang, Byunghoon, 2021. "Inference In Nonparametric Series Estimation With Specification Searches For The Number Of Series Terms," Econometric Theory, Cambridge University Press, vol. 37(2), pages 311-345, April.
    15. Gonçalves, Sílvia & Herrera, Ana María & Kilian, Lutz & Pesavento, Elena, 2021. "Impulse response analysis for structural dynamic models with nonlinear regressors," Journal of Econometrics, Elsevier, vol. 225(1), pages 107-130.
    16. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    17. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    18. Kanazawa, Nobuyuki, 2020. "Radial basis functions neural networks for nonlinear time series analysis and time-varying effects of supply shocks," Journal of Macroeconomics, Elsevier, vol. 64(C).
    19. Wolfgang Härdle & Helmut Lütkepohl & Rong Chen, 1997. "A Review of Nonparametric Time Series Analysis," International Statistical Review, International Statistical Institute, vol. 65(1), pages 49-72, April.
    20. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    21. Jia Li & Zhipeng Liao & Mengsi Gao, 2020. "Uniform nonparametric inference for time series using Stata," Stata Journal, StataCorp LP, vol. 20(3), pages 706-720, September.
    22. Valerie A. Ramey & Sarah Zubairy, 2018. "Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 850-901.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Goncalves & Ana María Herrera & Lutz Kilian & Elena Pesavento, 2024. "Nonparametric Local Projections," Working Papers 2414, Federal Reserve Bank of Dallas.
    2. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    3. Gonçalves, Sílvia & Herrera, Ana María & Kilian, Lutz & Pesavento, Elena, 2021. "Impulse response analysis for structural dynamic models with nonlinear regressors," Journal of Econometrics, Elsevier, vol. 225(1), pages 107-130.
    4. Amendola, Adalgiso & Di Serio, Mario & Fragetta, Matteo & Melina, Giovanni, 2020. "The euro-area government spending multiplier at the effective lower bound," European Economic Review, Elsevier, vol. 127(C).
    5. Britta Gehrke & Brigitte Hochmuth, 2021. "Counteracting Unemployment in Crises: Non‐Linear Effects of Short‐Time Work Policy," Scandinavian Journal of Economics, Wiley Blackwell, vol. 123(1), pages 144-183, January.
    6. Abdallah, Chadi & Kpodar, Kangni, 2023. "How large and persistent is the response of inflation to changes in retail energy prices?," Journal of International Money and Finance, Elsevier, vol. 132(C).
    7. Fabio Bertolotti & Massimiliano Marcellino, 2019. "Tax shocks with high and low uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 972-993, September.
    8. Cordoni, Francesco & Dorémus, Nicolas & Moneta, Alessio, 2024. "Identification of vector autoregressive models with nonlinear contemporaneous structure," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    9. Peter Horvath & Jia Li & Zhipeng Liao & Andrew J. Patton, 2022. "A consistent specification test for dynamic quantile models," Quantitative Economics, Econometric Society, vol. 13(1), pages 125-151, January.
    10. De Santis, Roberto A. & Tornese, Tommaso, 2023. "Energy supply shocks’ nonlinearities on output and prices," Working Paper Series 2834, European Central Bank.
    11. Caggiano, Giovanni & Castelnuovo, Efrem & Damette, Olivier & Parent, Antoine & Pellegrino, Giovanni, 2017. "Liquidity traps and large-scale financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 81(C), pages 99-114.
    12. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    13. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    14. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
    15. Ansgar Belke & Pascal Goemans, 2021. "Uncertainty and nonlinear macroeconomic effects of fiscal policy in the US: a SEIVAR-based analysis," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 49(4), pages 623-646, May.
    16. Goemans, Pascal & Belke, Ansgar, 2019. "Uncertainty and non-linear macroeconomic effects of fiscal policy in the US: A SEIVAR-based analysis," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203538, Verein für Socialpolitik / German Economic Association.
    17. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162, arXiv.org, revised Feb 2020.
    18. Di Serio, Mario & Fragetta, Matteo & Melina, Giovanni, 2021. "The impact of r-g on Euro-Area government spending multipliers," Journal of International Money and Finance, Elsevier, vol. 119(C).
    19. António Afonso & Jaromír Baxa & Michal Slavík, 2018. "Fiscal developments and financial stress: a threshold VAR analysis," Empirical Economics, Springer, vol. 54(2), pages 395-423, March.
    20. Giovanni Pellegrino, 2021. "Uncertainty and monetary policy in the US: A journey into nonlinear territory," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 1106-1128, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.19089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.