IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.07377.html
   My bibliography  Save this paper

Simulating Gaussian vectors via randomized dimension reduction and PCA

Author

Listed:
  • Nabil Kahale

Abstract

We study the problem of estimating E(g(X)), where g is a real-valued function of d variables and X is a d-dimensional Gaussian vector with a given covariance matrix. We present a new unbiased estimator for E(g(X)) that combines the randomized dimension reduction technique with principal components analysis. Under suitable conditions, we prove that our algorithm outperforms the standard Monte Carlo method by a factor of order d.

Suggested Citation

  • Nabil Kahale, 2023. "Simulating Gaussian vectors via randomized dimension reduction and PCA," Papers 2304.07377, arXiv.org.
  • Handle: RePEc:arx:papers:2304.07377
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.07377
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farshid Jamshidian & Yu Zhu, 1996. "Scenario Simulation: Theory and methodology (*)," Finance and Stochastics, Springer, vol. 1(1), pages 43-67.
    2. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    3. Yulia Gel & Adrian E. Raftery & Tilmann Gneiting, 2004. "Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation Method," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 575-583, January.
    4. Nabil Kahalé, 2019. "Efficient Simulation of High Dimensional Gaussian Vectors," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 58-73, February.
    5. Paul Glasserman & Jeremy Staum, 2003. "Resource Allocation Among Simulation Time Steps," Operations Research, INFORMS, vol. 51(6), pages 908-921, December.
    6. Daniel Russo & Benjamin Van Roy, 2014. "Learning to Optimize via Posterior Sampling," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1221-1243, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabil Kahalé, 2019. "Efficient Simulation of High Dimensional Gaussian Vectors," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 58-73, February.
    2. David Simchi-Levi & Rui Sun & Huanan Zhang, 2022. "Online Learning and Optimization for Revenue Management Problems with Add-on Discounts," Management Science, INFORMS, vol. 68(10), pages 7402-7421, October.
    3. Hamsa Bastani & David Simchi-Levi & Ruihao Zhu, 2022. "Meta Dynamic Pricing: Transfer Learning Across Experiments," Management Science, INFORMS, vol. 68(3), pages 1865-1881, March.
    4. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    5. Rong Jin & David Simchi-Levi & Li Wang & Xinshang Wang & Sen Yang, 2021. "Shrinking the Upper Confidence Bound: A Dynamic Product Selection Problem for Urban Warehouses," Management Science, INFORMS, vol. 67(8), pages 4756-4771, August.
    6. Peter Grundke & Kamil Pliszka, 2018. "A macroeconomic reverse stress test," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1093-1130, May.
    7. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
    8. Xiangyu Gao & Stefanus Jasin & Sajjad Najafi & Huanan Zhang, 2022. "Joint Learning and Optimization for Multi-Product Pricing (and Ranking) Under a General Cascade Click Model," Management Science, INFORMS, vol. 68(10), pages 7362-7382, October.
    9. Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
    10. T. Law & J. Shawe-Taylor, 2017. "Practical Bayesian support vector regression for financial time series prediction and market condition change detection," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1403-1416, September.
    11. Cui, Zhenyu & Lee, Chihoon & Zhu, Lingjiong & Zhu, Yunfan, 2021. "Non-convex isotonic regression via the Myersonian approach," Statistics & Probability Letters, Elsevier, vol. 179(C).
    12. Laruent Barras, 2005. "International Conditional Asset Allocation under Real Time Uncertrainty," FAME Research Paper Series rp153, International Center for Financial Asset Management and Engineering.
    13. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    14. Fabio Trojani, 2007. "Accurate Short-Term Yield Curve Forecasting using Functional Gradient Descent," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 591-623, Fall.
    15. James Sharpe & Nick Fieller, 2016. "Uncertainty in functional principal component analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2295-2309, September.
    16. Rodriguez, Sergio & Ludkovski, Michael, 2020. "Probabilistic bisection with spatial metamodels," European Journal of Operational Research, Elsevier, vol. 286(2), pages 588-603.
    17. Maria Dimakopoulou & Zhimei Ren & Zhengyuan Zhou, 2021. "Online Multi-Armed Bandits with Adaptive Inference," Papers 2102.13202, arXiv.org, revised Jun 2021.
    18. Chiara Sabelli & Michele Pioppi & Luca Sitzia & Giacomo Bormetti, 2014. "Multi-curve HJM modelling for risk management," Papers 1411.3977, arXiv.org, revised Oct 2015.
    19. Anand Kalvit & Aleksandrs Slivkins & Yonatan Gur, 2024. "Incentivized Exploration via Filtered Posterior Sampling," Papers 2402.13338, arXiv.org.
    20. Andrea Beltratti & Andrea Consiglio & Stavros Zenios, 1999. "Scenario modeling for the management ofinternational bond portfolios," Annals of Operations Research, Springer, vol. 85(0), pages 227-247, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.07377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.