IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.04676.html
   My bibliography  Save this paper

Adjust factor with volatility model using MAXFLAT low-pass filter and construct portfolio in China A share market

Author

Listed:
  • Ke Zhang

Abstract

In the field of quantitative finance, volatility models, such as ARCH, GARCH, FIGARCH, SV, EWMA, play the key role in risk and portfolio management. Meanwhile, factor investing is more and more famous since mid of 20 century. CAPM, Fama French three factor model, Fama French five-factor model, MSCI Barra factor model are mentioned and developed during this period. In this paper, we will show why we need adjust group of factors by our MAXFLAT low-pass volatility model. All of our experiments are under China's CSI 300 and CSI 500 universe which represent China's large cap stocks and mid-small cap stocks. Our result shows adjust factors by MAXFLAT volatility model have better performance in both large cap and small cap universe than original factors or other risk adjust factors in China A share. Also the portfolio constructed by MAXFLAT risk adjust factors have continuous excess return and lower beta compare with benchmark index.

Suggested Citation

  • Ke Zhang, 2023. "Adjust factor with volatility model using MAXFLAT low-pass filter and construct portfolio in China A share market," Papers 2304.04676, arXiv.org, revised Apr 2023.
  • Handle: RePEc:arx:papers:2304.04676
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.04676
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    3. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    4. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    6. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    7. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    8. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Zhang, 2023. "Construct sparse portfolio with mutual fund's favourite stocks in China A share market," Papers 2305.01642, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanislav Bozhkov & Habin Lee & Uthayasankar Sivarajah & Stella Despoudi & Monomita Nandy, 2020. "Idiosyncratic risk and the cross-section of stock returns: the role of mean-reverting idiosyncratic volatility," Annals of Operations Research, Springer, vol. 294(1), pages 419-452, November.
    2. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    3. Choi, Jaewon & Richardson, Matthew, 2016. "The volatility of a firm's assets and the leverage effect," Journal of Financial Economics, Elsevier, vol. 121(2), pages 254-277.
    4. Nicolau, Juan Luis & Sharma, Abhinav, 2022. "A review of research into drivers of firm value through event studies in tourism and hospitality: Launching the Annals of Tourism Research curated collection on drivers of firm value through event stu," Annals of Tourism Research, Elsevier, vol. 95(C).
    5. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    6. Robert J Bianchi & Adam E Clements & Michael E Drew, 2009. "HACking at Non-linearity: Evidence from Stocks and Bonds," School of Economics and Finance Discussion Papers and Working Papers Series 244, School of Economics and Finance, Queensland University of Technology.
    7. Boons, Martijn & Duarte, Fernando & de Roon, Frans & Szymanowska, Marta, 2020. "Time-varying inflation risk and stock returns," Journal of Financial Economics, Elsevier, vol. 136(2), pages 444-470.
    8. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
    9. Hira Aftab & A. B. M. Rabiul Alam Beg, 2021. "Does Time Varying Risk Premia Exist in the International Bond Market? An Empirical Evidence from Australian and French Bond Market," IJFS, MDPI, vol. 9(1), pages 1-13, January.
    10. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    11. Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
    12. Xiafei Li & Chris Brooks & Joëlle Miffre, 2009. "The Value Premium and Time-Varying Volatility," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 36(9-10), pages 1252-1272.
    13. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    14. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The memory of stock return volatility: Asset pricing implications," Journal of Financial Markets, Elsevier, vol. 47(C).
    15. Virla, Leonardo Quero, 2021. "An empirical characterization of volatility dynamics in the DAX," IPE Working Papers 167/2021, Berlin School of Economics and Law, Institute for International Political Economy (IPE).
    16. Yoonjae Noh & Jong-Min Kim & Soongoo Hong & Sangjin Kim, 2023. "Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    17. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    18. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    19. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    20. Bradrania, Reza & Veron, Jose Francisco, 2023. "The beta anomaly in the Australian stock market and the lottery demand," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.04676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.